Abstract

A six-wave set-up is described to determine molecular dynamics in the condensed phase. Applying two independent time delays between excitation and probe pulses additional information on the dynamics should be obtainable. We show experimentally that such investigations can be carried out with noisy light having intensity fluctuations in the femtosecond region. As first result we found a fast relaxation time in neat nitrobenzene of 100 fs, becoming even faster in mixtures with low viscosity liquids. Switching on a Raman resonance yields a longer relaxation time, which could be explained by an additional contribution by that vibration.