International Journal of Photoenergy
 Journal metrics
See full report
Acceptance rate16%
Submission to final decision141 days
Acceptance to publication20 days
CiteScore4.800
Journal Citation Indicator0.560
Impact Factor3.2

Maximizing Conversion Efficiency: A Numerical Analysis on P+ a-SiC/i Interface/n-Si Heterojunction Solar Cells with AMPS-1D

Read the full article

 Journal profile

International Journal of Photoenergy publishes original research and review articles focused on all areas of photoenergy, including photochemistry and solar energy utilization.

 Editor spotlight

Chief Editor, Giulia Grancini, is based at the University of Pavia, Italy. Her current research work aims at solving the stability and toxicity issues of developing multi-dimensional hybrid interfaces as lego-bricks for a new efficient, stable, and environmentally-friendly solar technology.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Rapid Thermal Processing and Improved Photocatalysis of Bi2O3-BaTiO3 Heterojunction

Bi2O3-BaTiO3 heterojunction with high photocatalysis efficiency was directly synthesized by rapid thermal processing (RTP). Bi2O3 and BaTiO3 were mixed in ratio and treated by RTP and conventional thermal processing (CTP), respectively. RTP samples have obvious Bi2O3 diffraction peaks, while CTP samples show pure BaTiO3 tetragonal perovskite. More small particles and layered existed in RTP samples. Photodegradation of MB solutions shows that RTP can promote photocatalytic efficiency. Its main lies in the following points: RTP can remove grain boundary defects by strengthening the bond grains; RTP can limit the solution region of the two substances to a certain range to get the best built-in electric field width; and RTP can strengthen the tetragonal BaTiO3 phase to hasten ion movement. Therefore, RTP can achieve much higher photocatalytic efficiency by improving the build heterojunction. This work provides a direct and efficient route to get improvement and high performance of heterojunction.

Research Article

Strongly Bound Frenkel Excitons on TiO2 Nanoparticles: An Evolutionary and DFT Approach

An evolutionary algorithm was employed to locate the global minimum of nanoparticles with . More than 61,000 structures were calculated with a semiempirical method and reoptimized using density functional theory. The exciton binding energy of TiO2 nanoparticles was determined through the fundamental and optical band gap. Frenkel exciton energy scales as , resulting in strongly bound excitons of 0.132–1.2 eV for about 1.4 nm nanoparticles. Although the exciton energy decreases with the system size, these tightly bound Frenkel excitons inhibit the separation of photogenerated charge carriers, making their application in photocatalysis and photovoltaic devices difficult, and imposing a minimum particle size. In contrast, the exciton binding energy of rutile is 4 meV, where the Wannier exciton energy scales as . Moreover, the Wannier excitons in bulk TiO2 are delocalized according to the Bohr radii: 3.9 nm for anatase and 7.7 nm for rutile.

Research Article

ZnO/NiO Nanocomposite with Enhanced Photocatalytic H2 Production

Inorganic photocatalytic materials exhibiting a highly efficient response to ultraviolet-visible light spectrum have become a subject of widespread global interest. They offer a substantial prospect for generating green energy and mitigating water pollution. Zinc oxide (ZnO), among various semiconductors, proves advantageous for water-splitting applications due to its elevated reactivity, chemical stability, and nontoxic nature. However, its efficacy as a photocatalyst is hindered by limited light absorption capacity and swift charge carrier recombination. To improve charge separation and enhance responsiveness to ultraviolet-visible light photocatalysis, the formation of a heterojunction with another suitable semiconductor is beneficial. Thus, we employed hydrothermal route for the synthesis of the samples, which is a high-pressure method. The formations of ZnO/NiO heterostructures were revealed by scanning electron microscopy, X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The nanocomposites were discovered to have a substantially higher photocatalytic activity for the generation of H2. The H2 production rates show that ZnO (i.e., 168.91 molg-1 h-1) exhibits good H2 production rates as compared to NiO (i.e., 135.74 molg-1 h-1). The best production rates were observed for ZN-30 (i.e., 247.56 molg-1 h-1) which is 1.46 times greater than ZnO and 1.82 times greater than NiO. This enhanced photocatalytic activity for ZN-30 is because of the good electron-hole pair separation due to the formation of depletion layer, suppression of fast charge recombination, and overcoming resistance corrosion.

Research Article

PA-YOLO-Based Multifault Defect Detection Algorithm for PV Panels

In recent years, solar photovoltaic (PV) energy, as a clean energy source, has received widespread attention and experienced rapid growth worldwide. However, the rapid growth of PV power deployment also brings important challenges to the maintenance of PV panels, and in order to solve this problem, this paper proposes an innovative algorithm based on PA-YOLO. First, we propose to use PA-YOLO’s asymptotic feature pyramid network (AFPN) instead of YOLOv7’s backbone network to support direct interactions of nonadjacent layers and avoid large semantic gaps between nonadjacent layers. For the occlusion problem of dense targets in the dataset, we introduce a repulsive loss function, which successfully reduces the occurrence of false detection situations. Finally, we propose a customized convolutional block equipped with an EMA mechanism to enhance the perceptual and expressive capabilities of the model. Experimental results on the dataset show that our proposed model achieves excellent performance with an average accuracy (mAP) of 94.5%, which is 6.8% higher than YOLOv7. In addition, our algorithm also succeeds in drastically reducing the model size from 71.3 MB to 48.4 MB, which well demonstrates the effectiveness of the model.

Research Article

Fault Diagnosis of PV Array Based on Time Series and Support Vector Machine

This paper proposes a diagnosis method based on time series and support vector machine (SVM) to improve the timeliness, accuracy, and feasibility of fault diagnosis for photovoltaic (PV) arrays. It obtains the nominal output power of the PV array based on real-time collected data such as voltage, current, radiation, and temperature and normalizes the power values at different time points throughout the day to form a time series. Using the time series values as input data for a “one-to-one” multiclass classifier, we can identify and classify typical operational faults such as random shading, fixed shading, and aging degradation of PV arrays. The developed algorithmic model is trained and tested for different fault conditions using the data sets generated by the PV array simulation device. The experimental results show that our model has fairly good reliability and accuracy, and to some extent, it solves the problem of classifying shading and aging faults, two of which exhibit rather similar degradation characteristics.

Research Article

Influence of Inclination Angle at the Chimney Inlet on the Power Generation in Solar Chimney Power Plants through 3D CFD Model

The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle () at chimney inlet on performance characteristics of the system by employing RNG turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (°–80°) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with ° compared to that of 14.3 m/s obtained for the base model having ° at 1000 W/m2. Besides, this configuration enhances power output to 61.5 kW with a rise of 24.5% compared to the base model with a power output of 49.1 kW at 1000 W/m2.

International Journal of Photoenergy
 Journal metrics
See full report
Acceptance rate16%
Submission to final decision141 days
Acceptance to publication20 days
CiteScore4.800
Journal Citation Indicator0.560
Impact Factor3.2
 Submit Check your manuscript for errors before submitting

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.