About this Journal Submit a Manuscript Table of Contents
Advances in Astronomy
Volume 2012 (2012), Article ID 124931, 6 pages
http://dx.doi.org/10.1155/2012/124931
Research Article

On the Limitations of the Anomalous Microwave Emission Emissivity

1Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
2NASA Herschel Science Center, Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
3Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK

Received 13 August 2012; Revised 12 October 2012; Accepted 7 November 2012

Academic Editor: Laurent Verstraete

Copyright © 2012 Christopher T. Tibbs et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Leitch, A. C. S. Readhead, T. J. Pearson, and S. T. Myers, “An anomalous component of Galactic emission,” Astrophysical Journal Letters, vol. 486, no. 1, pp. L23–L26, 1997. View at Scopus
  2. A. J. Banday, C. Dickinson, R. D. Davies, R. J. Davis, and K. M. Górski, “Reappraising foreground contamination in the COBE-DMR data,” Monthly Notices of the Royal Astronomical Society, vol. 345, no. 3, pp. 897–911, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. R. D. Davies, C. Dickinson, A. J. Banday, T. R. Jaffe, K. M. Górski, and R. J. Davis, “A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 3, pp. 1125–1139, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ghosh, A. J. Banday, T. Jaffe et al., “Foreground analysis using cross-correlations of external templates on the 7-year Wilkinson Microwave Anisotropy Probe data,” Monthly Notices of the Royal Astronomical Society, vol. 422, no. 4, pp. 3617–3642, 2012. View at Publisher · View at Google Scholar
  5. R. A. Watson, R. Rebolo, J. A. Rubiño-Martín et al., “Detection of anomalous microwave emission in the Perseus molecular cloud with the COSMOSOMAS experiment,” Astrophysical Journal Letters, vol. 624, no. 2, pp. L89–L92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Casassus, C. Dickinson, K. Cleary et al., “Centimetre-wave continuum radiation from the ρ Ophiuchi molecular cloud,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 3, pp. 1075–1090, 2008. View at Publisher · View at Google Scholar
  7. C. T. Tibbs, R. A. Watson, C. Dickinson et al., “Very Small Array observations of the anomalous microwave emission in the Perseus region,” Monthly Notices of the Royal Astronomical Society, vol. 402, no. 3, pp. 1969–1979, 2010. View at Publisher · View at Google Scholar
  8. Planck Collaboration, “Planck early results. XX. New light on anomalous microwave emission from spinning dust grains,” Astronomy & Astrophysics, vol. 536, A20, 2011. View at Publisher · View at Google Scholar
  9. C. T. Tibbs, A. M. M. Scaife, C. Dickinson, et al., “AMI Observations of the Anomalous Microwave Emission in the Persus Molecular Cloud,” The Astrophysical Journal. submitted to.
  10. D. P. Finkbeiner, D. J. Schlegel, C. Frank, and C. Heiles, “Tentative detection of electric dipole emission from rapidly rotating dust grains,” Astrophysical Journal Letters, vol. 566, no. 2, pp. 898–904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Casassus, G. F. Cabrera, F. Förster, T. J. Pearson, A. C. S. Readhead, and C. Dickinson, “Morphological analysis of the centimeter-wave continuum in the dark cloud LDN 1622,” Astrophysical Journal, vol. 639, no. 2 I, pp. 951–964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Dickinson, S. Casassus, R. D. Davies et al., “Infrared-correlated 31-GHz radio emission from Orion East,” Monthly Notices of the Royal Astronomical Society, vol. 407, no. 4, pp. 2223–2229, 2010. View at Publisher · View at Google Scholar
  13. A. M. M. Scaife, N. Hurley-Walker, D. A. Green et al., “An excess of emission in the dark cloud LDN 1111 with the Arcminute Microkelvin Imager,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 394, no. 1, pp. L46–L50, 2009. View at Publisher · View at Google Scholar
  14. C. Dickinson, R. D. Davies, L. Bronfman et al., “CBI limits on 31 GHz excess emission in southern HII regions,” Monthly Notices of the Royal Astronomical Society, vol. 379, no. 1, pp. 297–307, 2007. View at Publisher · View at Google Scholar
  15. M. Todorović, R. D. Davies, C. Dickinson et al., “A 33-GHz Very Small Array survey of the Galactic plane from = 27° to 46°,” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 3, pp. 1629–1643, 2010. View at Publisher · View at Google Scholar
  16. C. T. Tibbs, R. Paladini, M. Compiègne et al., “A multi-wavelength investigation of RCW175: An H II region harboring spinning dust emission,” Astrophysical Journal, vol. 754, no. 2, article no. 94, 2012. View at Publisher · View at Google Scholar
  17. E. J. Murphy, G. Helou, J. J. Condon et al., “The detection of anomalous dust emission in the nearby galaxy NGC 6946,” Astrophysical Journal Letters, vol. 709, no. 2, pp. L108–L113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. M. Scaife, B. Nikolic, D. A. Green et al., “Microwave observations of spinning dust emission in NGC 6946,” Monthly Notices of the Royal Astronomical Society: Letters, vol. 406, no. 1, pp. L45–L49, 2010. View at Publisher · View at Google Scholar
  19. B. T. Draine and A. Lazarian, “Electric dipole radiation from spinning dust grains,” Astrophysical Journal Letters, vol. 508, no. 1, pp. 157–179, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Ali-Haïmoud, C. M. Hirata, and C. Dickinson, “A refined model for spinning dust radiation,” Monthly Notices of the Royal Astronomical Society, vol. 395, no. 2, pp. 1055–1078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Hoang, B. T. Draine, and A. Lazarian, “Improving the model of emission from spinning dust: effects of grain wobbling and transient spin-up,” Astrophysical Journal Letters, vol. 715, no. 2, pp. 1462–1485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Ysard and L. Verstraete, “The long-wavelength emission of interstellar PAHs: characterizing the spinning dust contribution,” Astronomy and Astrophysics, vol. 509, no. 1, article no. A12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Hoang, A. Lazarian, and B. T. Draine, “Spinning dust emission: effects of irregular grain shape, transient heating, and comparison with Wilkinson Microwave Anisotropy Probe results,” Astrophysical Journal, vol. 741, no. 2, article no. 87, 2011. View at Publisher · View at Google Scholar
  24. K. Silsbee, Y. Ali-Haïmoud, and C. M. Hirata, “Spinning dust emission: the effect of rotation around a non-principal axis,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 4, pp. 2750–2769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Génova-Santos, R. Rebolo, J. A. Rubiño-Martín, C. H. López-Caraballo, and S. R. Hildebrandt, “Detection of anomalous microwave emission in the Pleiades reflection nebula with Wilkinson Microwave Anisotropy Probe and the COSMOSOMAS experiment,” Astrophysical Journal, vol. 743, no. 1, article no. 67, 2011. View at Publisher · View at Google Scholar
  26. M. Vidal, S. Casassus, C. Dickinson et al., “Dust-correlated cm wavelength continuum emission from translucent clouds ζ Oph and LDN 1780,” Monthly Notices of the Royal Astronomical Society, vol. 414, no. 3, pp. 2424–2435, 2011. View at Publisher · View at Google Scholar
  27. P. Castellanos, S. Casassus, C. Dickinson et al., “Dust-correlated centimetre-wave radiation from the M78 reflection nebula,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 2, pp. 1137–1150, 2011. View at Publisher · View at Google Scholar
  28. A. Kogut, A. J. Banday, C. L. Bennett et al., “Microwave emission at high Galactic latitudes in the four-year DMR sky maps,” Astrophysical Journal Letters, vol. 464, no. 1, pp. L5–L9, 1996.
  29. A. De Oliveira-Costa, A. Kogut, M. J. Deviln, C. B. Netterfield, L. A. Page, and E. J. Wollack, “Galactic microwave emission at degree angular scales,” Astrophysical Journal Letters, vol. 482, no. 1, part 2, pp. L17–L20, 1997.
  30. W. T. Reach, E. Dwek, D. J. Fixsen et al., “Far-infrared spectral observations of the Galaxy by COBE,” Astrophysical Journal Letters, vol. 451, no. 1, pp. 188–199, 1995.
  31. F. Boulanger, A. Abergel, J. P. Bernard et al., “The dust/gas correlation at high Galactic latitude,” Astronomy and Astrophysics, vol. 312, no. 1, pp. 256–262, 1996. View at Scopus
  32. Planck Collaboration, “Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the “dark gas” in our Galaxy,” Astronomy & Astrophysics, vol. 536, article A19, 2011. View at Publisher · View at Google Scholar
  33. C. T. Tibbs, N. Flagey, R. Paladini et al., “Spitzer characterization of dust in an anomalous emission region: the Perseus cloud,” Monthly Notices of the Royal Astronomical Society, vol. 418, no. 3, pp. 1889–1900, 2011. View at Publisher · View at Google Scholar
  34. X. Dupac, J.-P. Bernard, N. Boudet et al., “Inverse temperature dependence of the dust submillimeter spectral index,” Astronomy and Astrophysics, vol. 404, no. 1, pp. L11–L15, 2003. View at Scopus
  35. B. Stepnik, A. Abergel, J.-P. Bernard et al., “Evolution of dust properties in an interstellar filament,” Astronomy and Astrophysics, vol. 398, no. 2, pp. 551–563, 2003. View at Scopus
  36. N. Flagey, A. Noriega-Crespo, F. Boulanger et al., “Evidence for dust evolution within the Taurus complex from Spitzer images,” Astrophysical Journal Letters, vol. 701, no. 2, pp. 1450–1463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. A. Goodman, J. E. Pineda, and S. L. Schnee, “The “True” column density distribution in star-forming molecular clouds,” The Astrophysical Journal, vol. 692, article 91, 2009. View at Publisher · View at Google Scholar
  38. B. T. Draine and A. Li, “Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era,” Astrophysical Journal Letters, vol. 657, no. 2, pp. 810–837, 2007. View at Publisher · View at Google Scholar
  39. Planck Collaboration, “Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds,” Astronomy & Astrophysics, vol. 536, A17, 2011. View at Publisher · View at Google Scholar
  40. B. T. Draine, D. A. Dale, G. Bendo et al., “Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample,” Astrophysical Journal Letters, vol. 663, no. 2 I, pp. 866–894, 2007. View at Publisher · View at Google Scholar