About this Journal Submit a Manuscript Table of Contents
Advances in Astronomy
Volume 2012 (2012), Article ID 167375, 6 pages
http://dx.doi.org/10.1155/2012/167375
Research Article

Probable Values of Current Solar Cycle Peak

1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
2Facultad de Ingeniería, Universidad de Buenos Aires, Av. Las Heras 2214-Piso 3-C1127AAR, Buenos Aires, Argentina

Received 18 November 2011; Revised 27 December 2011; Accepted 3 January 2012

Academic Editor: J. P. Rozelot

Copyright © 2012 V. M. Silbergleit. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Gleissberg, “Probability laws of sunspot variations,” Astrophysical Journal, vol. 96, p. 234, 1942.
  2. G. M. Brown and E. C. Butcher, “The use of abnormal quiet days in Sq(H) for predicting the magnitude of sunspot maximum at the time of preceding sunspot minimum,” Planetary and Space Science, vol. 29, no. 1, pp. 73–77, 1981.
  3. R. Thompson, “A technique for predicting the amplitude of the solar cycle,” Solar Physics, vol. 148, no. 2, pp. 383–388, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. D. H. Hathaway, R. M. Wilson, and E. J. Reichmann, “A synthesis of solar cycle prediction techniques,” Journal of Geophysical Research A, vol. 104, no. 10, pp. 22375–22388, 1999. View at Scopus
  5. S. Duhau, “An early prediction of maximum sunspot number in solar cycle 24,” Solar Physics, vol. 213, no. 1, pp. 203–212, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. V. M. Silbergleit and P. A. Larocca, “Geomagnetic activity and solar cycles,” Advances in Space Research, vol. 36, no. 12, pp. 2384–2387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Friis-Christensen and K. Lassen, “Length of the solar cycle: an indicator of solar activity closely associated with climate,” Science, vol. 254, no. 5032, pp. 698–700, 1991. View at Scopus
  8. K. H. Schatten and W. D. Pesnell, “An early dynamo prediction: cycle 23 is approximately cycle 22,” Geophysical Research Letters, vol. 20, no. 20, pp. 2275–2278, 1993.
  9. D. H. Hathaway, R. M. Wilson, and E. J. Reichmann, “A synthesis of solar cycle prediction techniques,” Journal of Geophysical Research A, vol. 104, no. 10, pp. 375–388, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. R. P. Kane, “Prediction of solar cycle maximum using solar cycle lengths,” Solar Physics, vol. 248, no. 1, pp. 203–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. G. McNish and J. V. Lincoln, “Prediction of sunspot numbers,” Eos, Transactions, American Geophysical Union, vol. 30, p. 673, 1949.
  12. K. O. Neihuss, H. C. Euler Jr., W. W. Vaugan, et al., “Statistical technique for intermediate and long-range estimation of 13-month smoothed solar flux and geomagnetic index,” NASA Technical Reports TM-4759, 81, 1996.
  13. R. L. Holland and W. W. Vaughan, “Lagrangian least-squares prediction of solar flux (F-10.7),” Journal of Geophysical Research, vol. 89, no. 1, pp. 11–16, 1984. View at Scopus
  14. M. Stuiver, “Variations in radiocarbon concentration and sunspot activity,” Journal Geophysical Research, vol. 66, no. 1, pp. 273–276, 1961. View at Publisher · View at Google Scholar
  15. O. G. Badalyan, V. N. Obridko, and J. Sykora, “Brightness of the coronal green line and prediction for activity cycles 23 and 24,” Solar Physics, vol. 199, no. 2, pp. 421–435, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. L. Wang, J. C. Gong, S. Q. Liu, G. M. Le, and J. L. Sun, “The prediction of maximum amplitudes of solar cycles and maximum amplitude of solar cycle 24,” Chinese Journal Astronomy Astropysics, vol. 2, no. 6, pp. 557–562, 2002.
  17. K. H. Schatten, “Solar activity and the solar cycle,” Advances in Space Research, vol. 32, no. 4, pp. 451–460, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. F. De Meyer, “A transfer function model for the sunspot cycle,” Solar Physics, vol. 217, no. 2, pp. 349–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. I. J. Crosson and P. M. Binder, “Chaos-based forecast of sunspot cycle 24,” Journal of Geophysical Research A, vol. 114, no. 1, Article ID A01108, 2009. View at Publisher · View at Google Scholar
  20. R. P. Kane, “Prediction of the size of coming solar cycle 24 based on solar parameters during sunspot minimum between cycles 23 and 24,” Indian Journal of Radio & Space Physics, vol. 40, pp. 72–75, 2011.
  21. R. P. Kane, “A preliminary estimate of the size of the coming solar cycle 24, based on Ohl's precursor method,” Solar Physics, vol. 243, no. 2, pp. 205–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. W. D. Pesnell, “Predictions of solar cycle 24,” Solar Physics, vol. 252, no. 1, pp. 209–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. I. N. Kitashvili and A. G. Kosivichev, “Prediction of solar activity cycles by assimilating sunspot data into a dynamo model. Solar and stellar variability: impact on earth and planets,” in Proceedings of the International Astronomical Union, no. 264, p. 202, IAU Symposium, 2009.
  24. A. Kilcik, C. N. K. Anderson, J. P. Rozelot, H. Ye, G. Sugihara, and A. Ozguc, “Nonlinear prediction of solar cycle 24,” The Astrophysical Journal, vol. 693, no. 2, p. 1173, 2009. View at Publisher · View at Google Scholar
  25. N. R. Rigozo, M. P. Souza Echer, H. Evangelista, D. J. R. Nordemann, and E. Echer, “Prediction of sunspot number amplitude and solar cycle length for cycles 24 and 25,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 73, no. 11-12, pp. 1294–1299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Ajabshirizadeh, N. M. Jouzdani, and S. Abbassi, “Neural network prediction of solar cycle 24,” Research in Astronomy and Astrophysics, vol. 11, no. 4, pp. 491–496, 2011. View at Publisher · View at Google Scholar
  27. M. I. Pishkalo, “Prediciton of amplitude of solar cycle 24. Based on polar magnetic field of the sun at cycle minimum,” Sun and Geosphere, vol. 5, no. 2, pp. 47–51, 2010.
  28. R. S. Dabas and K. Sharma, “Prediction of solar cycle 24 using geomagnetic precursors: validation and update,” Solar Physics, vol. 266, no. 2, pp. 391–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Javaraiah, “Predicting the amplitude of a solar cycle using the north-south asymmetry in the previous cycle: II. An improved prediction for solar cycle 24,” Solar Physics, vol. 252, no. 2, pp. 419–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Yoshida and H. Yamagishi, “Predicting amplitude of solar cycle 24 based on a new precursor method,” Annales Geophysicae, vol. 28, no. 2, pp. 417–425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. B. R. Durney, “On the differences between odd and even solar cycles,” Solar Physics, vol. 196, no. 2, pp. 421–426, 2000.
  32. D. H. Hathaway and L. Rightmire, “Variations in the Sun's meridional flow over a solar cycle,” Science, vol. 327, no. 5971, pp. 1350–1352, 2010. View at Publisher · View at Google Scholar · View at PubMed