About this Journal Submit a Manuscript Table of Contents
Advances in Astronomy
Volume 2012 (2012), Article ID 846875, 15 pages
http://dx.doi.org/10.1155/2012/846875
Review Article

The Role of Gravitational Instabilities in the Feeding of Supermassive Black Holes

Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milano, Italy

Received 28 August 2011; Accepted 7 October 2011

Academic Editor: Francesco Shankar

Copyright © 2012 Giuseppe Lodato. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Bertin and G. Lodato, “Thermal stability of self-gravitating, optically thin accretion disks,” Astronomy and Astrophysics, vol. 370, no. 1, pp. 342–350, 2001.
  2. J. Goodman, “Self-gravity and quasi-stellar object discs,” Monthly Notices of the Royal Astronomical Society, vol. 339, no. 4, pp. 937–948, 2003. View at Publisher · View at Google Scholar
  3. P. I. Kolykhalov and R. A. Sunyaev, “Disk formation through accretion of stellar wind,” Soviet Astronomy Letters, vol. 5, pp. 180–183, 1979.
  4. S. Collin and J. P. Zahn, “Star formation and evolution in accretion disks around massive black holes: star formation and evolution in accretion disks,” Astronomy and Astrophysics, vol. 344, no. 2, pp. 433–449, 1999.
  5. D. N. C. Lin and J. E. Pringle, “A viscosity prescription for a self-gravitating accretion disc,” Monthly Notices Royal Astronomical Society, vol. 225, pp. 607–613, 1987.
  6. D. N. C. Lin and J. E. Pringle, “The formation and initial evolution of protostellar disks,” Astrophysical Journal, vol. 358, no. 2, pp. 515–524, 1990.
  7. I. Shlosman, J. Frank, and M. C. Begelman, “Bars within bars: a mechanism for fuelling active galactic nuclei,” Nature, vol. 338, no. 6210, pp. 45–47, 1989.
  8. T. Paumard, R. Genzel, F. Martins et al., “The two young star disks in the central parsec of the galaxy: properties, dynamics, and formation,” Astrophysical Journal, vol. 643, no. 2 I, article 033, pp. 1011–1035, 2006. View at Publisher · View at Google Scholar
  9. R. Genzel, F. Eisenhauer, and S. Gillessen, “The Galactic center massive black hole and nuclear star cluster,” Reviews of Modern Physics, vol. 82, no. 4, pp. 3121–3195, 2010. View at Publisher · View at Google Scholar
  10. M. Miyoshi, J. Moran, J. Herrnstein et al., “Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258,” Nature, vol. 373, no. 6510, pp. 127–129, 1995. View at Publisher · View at Google Scholar
  11. L. J. Greenhill, C. R. Gwinn, R. Antonucci, and R. Barvainis, “VLBI imaging of water maser emission from the nuclear torus of NGC 1068,” Astrophysical Journal, vol. 472, no. 1, pp. L21–L24, 1996.
  12. P. T. Kondratko, L. J. Greenhill, and J. M. Moran, “Discovery of water maser emission in five AGNs and a possible correlation between water maser and nuclear 2-10 keV luminosities,” Astrophysical Journal, vol. 652, no. 1 I, pp. 136–145, 2006. View at Publisher · View at Google Scholar
  13. P. Cossins, G. Lodato, and C. J. Clarke, “Characterizing the gravitational instability in cooling accretion discs,” Monthly Notices of the Royal Astronomical Society, vol. 393, no. 4, pp. 1157–1173, 2009. View at Publisher · View at Google Scholar
  14. G. Lodato and P. Natarajan, “The mass function of high-redshift seed black holes,” Monthly Notices of the Royal Astronomical Society, vol. 377, no. 1, pp. L64–L68, 2007. View at Publisher · View at Google Scholar
  15. M. Volonteri, G. Lodato, and P. Natarajan, “The evolution of massive black hole seeds,” Monthly Notices of the Royal Astronomical Society, vol. 383, no. 3, pp. 1079–1088, 2008. View at Publisher · View at Google Scholar
  16. G. Lodato, S. Nayakshin, A. R. King, and J. E. Pringle, “Black hole mergers: can gas discs solve the “final parsec” problem?” Monthly Notices of the Royal Astronomical Society, vol. 398, no. 3, pp. 1392–1402, 2009. View at Publisher · View at Google Scholar
  17. L. Ciotti and J. P. Ostriker, “Radiative feedback from massive black holes in elliptical galaxies: agn flaring and central starburst fueled by recycled gas,” Astrophysical Journal, vol. 665, no. 2 I, pp. 1038–1056, 2007. View at Publisher · View at Google Scholar
  18. L. Ciotti, J. P. Ostriker, and D. Proga, “Feedback from central black holes in elliptical galaxies. III. Models with both radiative and mechanical feedback,” Astrophysical Journal, vol. 717, no. 2, pp. 708–723, 2010. View at Publisher · View at Google Scholar
  19. P. F. Hopkins and E. Quataert, “How do massive black holes get their gas?” Monthly Notices of the Royal Astronomical Society, vol. 407, no. 3, pp. 1529–1564, 2010. View at Publisher · View at Google Scholar
  20. C. F. Gammie, “Nonlinear outcome of gravitational instability in cooling, gaseous disks,” Astrophysical Journal, vol. 553, no. 1, pp. 174–183, 2001. View at Publisher · View at Google Scholar
  21. G. Lodato and W. K. M. Rice, “Testing the locality of transport in self-gravitating accretion discs,” Monthly Notices of the Royal Astronomical Society, vol. 351, no. 2, pp. 630–642, 2004. View at Publisher · View at Google Scholar
  22. A. C. Mejia, R. H. Durisen, M. K. Pickett, and K. Cai, “The thermal regulation of gravitational instabilities in protoplanetary disks. II. Extended simulations with varied cooling rates,” Astrophysical Journal, vol. 619, no. 2 I, pp. 1098–1113, 2005. View at Publisher · View at Google Scholar
  23. A. C. Boley, A. C. Mejía, R. H. Durisen, K. Cai, M. K. Pickett, and P. D'Alessio, “The thermal regulation of gravitational instabilities in protoplanetary disks. III. Simulations with radiative cooling and realistic opacities,” Astrophysical Journal, vol. 651, no. 1 I, pp. 517–534, 2006. View at Publisher · View at Google Scholar
  24. W. K.M. Rice, G. Lodato, and P. J. Armitage, “Investigating fragmentation conditions in self-gravitating accretion discs,” Monthly Notices of the Royal Astronomical Society, vol. 364, no. 1, pp. L56–L60, 2005. View at Publisher · View at Google Scholar
  25. G. Lodato and W. K. M. Rice, “Testing the locality of transport in self-gravitating accretion discs - II. The massive disc case,” Monthly Notices of the Royal Astronomical Society, vol. 358, no. 4, pp. 1489–1500, 2005. View at Publisher · View at Google Scholar
  26. G. Lodato, “Self-gravitating accretion discs,” Nuovo Cimento Rivista Serie, vol. 30, no. 7, pp. 293–353, 2007. View at Publisher · View at Google Scholar
  27. R. H. Durisen, A. P. Boss, L. Mayer, A. F. Nelson, T. Quinn, and W. K. M. Rice, “Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation,” in Protostars and Planets V, B. Reipurth, D. Jewitt, and K. Keil, Eds., pp. 607–622, University of Arizona Press, Tucson, Ariz, USA, 2007.
  28. G. Bertin and G. Lodato, “A class of self-gravitating accretion disks,” Astronomy and Astrophysics, vol. 350, no. 2, pp. 694–704, 1999.
  29. A. Toomre, “On the gravitational stability of a disk of stars,” The Astrophysical Journal, vol. 139, p. 1217, 1964.
  30. G. Bertin, Dynamics of Galaxies, Cambridge University Press, Cambridge, UK, 2000.
  31. J. P. Ostriker and P. J. E. Peebles, “A Numerical study of the stability of flattened galaxies: or, can cold galaxies survive?” Astrophysical Journal, vol. 186, pp. 467–480, 1973.
  32. N. I. Shakura and R. A. Sunyaev, “Black holes in binary systems. Observational appearance,” Astronomy & Astrophysics, vol. 24, pp. 337–355, 1973.
  33. G. Lodato and G. Bertin, “Non-Keplerian rotation in the nucleus of NGC 1068: evidence for a massive accretion disk?” Astronomy and Astrophysics, vol. 398, no. 2, pp. 517–524, 2003.
  34. B. Paczyński, “A model of selfgravitating accretion disk with a hot corona,” Acta Astronomica, vol. 28, no. 3, pp. 241–251, 1978.
  35. G. Bertin, “Self-regulated accretion disks,” Astrophysical Journal, vol. 478, no. 2, pp. L71–L74, 1997.
  36. G. Laughlin and P. Bodenheimer, “Nonaxisymmetric evolution in protostellar disks,” Astrophysical Journal, vol. 436, no. 1, pp. 335–354, 1994.
  37. J. A. Sellwood and R. G. Carlberg, “Spiral instabilities provoked by accretion and star formation,” Astrophysical Journal, vol. 282, pp. 61–74, 1984.
  38. L. Mayer, G. Lufkin, T. Quinn, and J. Wadsley, “Fragmentation of gravitationally unstable gaseous protoplanetary disks with radiative transfer,” Astrophysical Journal, vol. 661, no. 1, pp. L77–L80, 2007. View at Publisher · View at Google Scholar
  39. B. M. Johnson and C. F. Gammie, “Nonlinear outcome of gravitational instability in disks with realistic cooling,” Astrophysical Journal, vol. 597, no. 1 I, pp. 131–141, 2003. View at Publisher · View at Google Scholar
  40. P. Cossins, G. Lodato, and C. Clarke, “The effects of opacity on gravitational stability in protoplanetary discs,” Monthly Notices of the Royal Astronomical Society, vol. 401, no. 4, pp. 2587–2598, 2010. View at Publisher · View at Google Scholar
  41. M. J. Rees, “Opacity-limited hierarchical fragmentation and the masses of protostars,” Monthly Notices of the Royal Astronomical Society, vol. 176, p. 483, 1976.
  42. J. Silk, “On the fragmentation of cosmic gas clouds. II—opacity-limited star formation,” Astrophysical Journal, vol. 214, pp. 152–160, 1977.
  43. C. J. Clarke, E. Harper-Clark, and G. Lodato, “The response of self-gravitating protostellar discs to slow reduction in cooling time-scale: the fragmentation boundary revisited,” Monthly Notices of the Royal Astronomical Society, vol. 381, no. 4, pp. 1543–1547, 2007. View at Publisher · View at Google Scholar
  44. F. Meru and M. R. Bate, “Non-convergence of the critical cooling time-scale for fragmentation of self-gravitating discs,” Monthly Notices of the Royal Astronomical Society, vol. 411, no. 1, pp. L1–L5, 2011. View at Publisher · View at Google Scholar
  45. G. Lodato and C. J. Clarke, “Resolution requirements for smoothed particle hydrodynamics simulations of self-gravitating accretion discs,” Monthly Notices of the Royal Astronomical Society, vol. 413, no. 4, pp. 2735–2740, 2011. View at Publisher · View at Google Scholar
  46. G. Lodato and P. J. Cossins, “Smoothed Particle Hydrodynamics for astrophysical flows. The dynamics of protostellar discs,” The European Physical Journal Plus, vol. 126, no. 4, 2011.
  47. S.-J. Paardekooper, C. Baruteau, and F. Meru, “Numerical convergence in self-gravitating disc simulations: initial conditions and edge effects,” Monthly Notices of the Royal Astronomical Society, vol. 416, no. 1, pp. L65–L69, 2011. View at Publisher · View at Google Scholar
  48. C. J. Clarke, “Pseudo-viscous modelling of self-gravitating discs and the formation of low mass ratio binaries,” Monthly Notices of the Royal Astronomical Society, vol. 396, no. 2, pp. 1066–1074, 2009. View at Publisher · View at Google Scholar
  49. R. R. Rafikov, “Properties of gravitoturbulent accretion disks,” Astrophysical Journal, vol. 704, no. 1, pp. 281–291, 2009. View at Publisher · View at Google Scholar
  50. D. Lynden-Bell and A. J. Kalnajs, “On the generating mechanism of spiral structure,” Monthly Notices of the Royal Astronomical Society, vol. 157, p. 1, 1972.
  51. S. A. Balbus and J. C. B. Papaloizou, “On the dynamical foundations of α disks,” Astrophysical Journal, vol. 521, no. 2, pp. 650–658, 1999.
  52. J. E. Pringle, “Accretion discs in astrophysics,” Annual Review of Astronomy and Astrophysics, vol. 19, pp. 137–160, 1981. View at Publisher · View at Google Scholar
  53. W. K. M. Rice, P. J. Armitage, G. Mamatsashvili, G. Lodato, and C. J. Clarke, “Stability of self-gravitating discs under irradiation,” Monthly Notices of the Royal Astronomical Society, vol. 418, no. 2, pp. 1356–1362, 2011. View at Publisher · View at Google Scholar
  54. X. Fan, J. F. Hennawi, G. T. Richards et al., “A survey of z > 5.7 quasars in the sloan digital sky survey. III. Discovery of five additional quasars,” Astronomical Journal, vol. 128, no. 2, pp. 515–522, 2004. View at Publisher · View at Google Scholar
  55. X. Fan, M. A. Strauss, G. T. Richards et al., “A survey of z > 5.7 quasars in the sloan digital sky survey. IV. Discovery of seven additional quasars,” Astronomical Journal, vol. 131, no. 3, pp. 1203–1209, 2006. View at Publisher · View at Google Scholar
  56. D. J. Mortlock, S. J. Warren, B. P. Venemans et al., “A luminous quasar at a redshift of z = 7.085,” Nature, vol. 474, no. 7353, pp. 616–619, 2011. View at Publisher · View at Google Scholar · View at PubMed
  57. Z. Haiman and A. Loeb, “Observational signatures of the first quasars,” Astrophysical Journal, vol. 503, no. 2, pp. 505–517, 1998.
  58. M. Volonteri, P. Madau, E. Quataert, and M. J. Rees, “The distribution and cosmic evolution of massive black hole spins,” Astrophysical Journal, vol. 620, no. 1 I, pp. 69–77, 2005. View at Publisher · View at Google Scholar
  59. J. S.B. Wyithe and A. Loeb, “Constraints on the process that regulates the growth of supermassive black holes based on the intrinsic scatter in the Mbh-σsph relation,” Astrophysical Journal, vol. 634, pp. 910–920, 2005. View at Publisher · View at Google Scholar
  60. T. Abel, G. L. Bryan, and M. L. Norman, “The formation and fragmentation of primordial molecular clouds,” Astrophysical Journal, vol. 540, no. 1, pp. 39–44, 2000.
  61. V. Bromm, P. S. Coppi, and R. B. Larson, “The formation of the first stars. I. The primordial star-forming cloud,” Astrophysical Journal, vol. 564, no. 1 I, pp. 23–51, 2002. View at Publisher · View at Google Scholar
  62. M. Volonteri and M. J. Rees, “Rapid growth of high-redshift black holes,” Astrophysical Journal, vol. 633, no. 2 I, pp. 624–629, 2005. View at Publisher · View at Google Scholar
  63. A. R. King, S. H. Lubow, G. I. Ogilvie, and J. E. Pringle, “Aligning spinning black holes and accretion discs,” Monthly Notices of the Royal Astronomical Society, vol. 363, no. 1, pp. 49–56, 2005. View at Publisher · View at Google Scholar
  64. G. Lodato and J. E. Pringle, “The evolution of misaligned accretion discs and spinning black holes,” Monthly Notices of the Royal Astronomical Society, vol. 368, no. 3, pp. 1196–1208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. R. King and J. E. Pringle, “Growing supermassive black holes by chaotic accretion,” Monthly Notices of the Royal Astronomical Society, vol. 373, no. 1, pp. L90–L92, 2006. View at Publisher · View at Google Scholar
  66. M. G. Haehnelt and M. J. Rees, “The formation of nuclei in newly formed galaxies and the evolution of the quasar population,” Monthly Notices Royal Astronomical Society, vol. 263, no. 1, pp. 168–178, 1993.
  67. M. Umemura, A. Loeb, and E. L. Turner, “Early cosmic formation of massive black holes,” Astrophysical Journal, vol. 419, no. 2, pp. 459–468, 1993.
  68. A. Loeb and F. A. Rasio, “Collapse of primordial gas clouds and the formation of quasar black holes,” Astrophysical Journal, vol. 432, no. 1, pp. 52–61, 1994.
  69. D. J. Eisenstein and A. Loeb, “Origin of quasar progenitors from the collapse of low-spin cosmological perturbations,” Astrophysical Journal, vol. 443, no. 1, pp. 11–17, 1995.
  70. V. Bromm and A. Loeb, “Formation of the first supermassive black holes,” Astrophysical Journal, vol. 596, no. 1 I, pp. 34–46, 2003. View at Publisher · View at Google Scholar
  71. S. M. Koushiappas, J. S. Bullock, and A. Dekel, “Massive black hole seeds from low angular momentum material,” Monthly Notices of the Royal Astronomical Society, vol. 354, no. 1, pp. 292–304, 2004. View at Publisher · View at Google Scholar
  72. M. C. Begelman, M. Volonteri, and M. J. Rees, “Formation of supermassive black holes by direct collapse in pre-galactic haloes,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 1, pp. 289–298, 2006. View at Publisher · View at Google Scholar
  73. G. Lodato and P. Natarajan, “Supermassive black hole formation during the assembly of pre-galactic discs,” Monthly Notices of the Royal Astronomical Society, vol. 371, no. 4, pp. 1813–1823, 2006. View at Publisher · View at Google Scholar
  74. M. S. Warren, P. J. Quinn, J. K. Salmon, and W. H. Zurek, “Dark halos formed via dissipationless collapse. I. Shapes and alignment of angular momentum,” Astrophysical Journal, vol. 399, no. 2, pp. 405–425, 1992.
  75. M. Dijkstra, Z. Haiman, A. Mesinger, and J. S. B. Wyithe, “Fluctuations in the high-redshift Lyman-Werner background: close halo pairs as the origin of supermassive black holes,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 4, pp. 1961–1972, 2008. View at Publisher · View at Google Scholar
  76. C. Shang, G. L. Bryan, and Z. Haiman, “Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir > rsim 104 K,” Monthly Notices of the Royal Astronomical Society, vol. 402, no. 2, pp. 1249–1262, 2010. View at Publisher · View at Google Scholar
  77. B. Devecchi and M. Volonteri, “Formation of the first nuclear clusters and massive black holes at high redshift,” Astrophysical Journal, vol. 694, no. 1, pp. 302–313, 2009. View at Publisher · View at Google Scholar
  78. L. Mayer, S. Kazantzidis, A. Escala, and S. Callegari, “Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers,” Nature, vol. 466, no. 7310, pp. 1082–1083, 2010. View at Publisher · View at Google Scholar · View at PubMed
  79. M. C. Begelman, E. M. Rossi, and P. J. Armitage, “Quasi-stars and the cosmic evolution of massive black holes,” Monthly Notices of the Royal Astronomical Society, vol. 387, no. 4, pp. 1649–1659, 2008. View at Publisher · View at Google Scholar
  80. E. Sirko and J. Goodman, “Spectral energy distributions of marginally self-gravitating quasi-stellar object discs,” Monthly Notices of the Royal Astronomical Society, vol. 341, no. 2, pp. 501–508, 2003. View at Publisher · View at Google Scholar
  81. M. C. Begelman and I. Shlosman, “Angular momentum transfer and lack of fragmentation in self-gravitating accretion flows,” Astrophysical Journal, vol. 702, no. 1, pp. L5–L8, 2009. View at Publisher · View at Google Scholar
  82. S. Collin and J. P. Zahn, “Star formation in accretion discs: from the Galactic center to active galactic nuclei,” Astronomy and Astrophysics, vol. 477, no. 2, pp. 419–435, 2008. View at Publisher · View at Google Scholar
  83. S. Nayakshin, J. Cuadra, and V. Springel, “Simulations of star formation in a gaseous disc around Sgr A*—a failed active galactic nucleus,” Monthly Notices of the Royal Astronomical Society, vol. 379, no. 1, pp. 21–33, 2007. View at Publisher · View at Google Scholar
  84. A. R. King and J. E. Pringle, “Fuelling active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 377, no. 1, pp. L25–L28, 2007. View at Publisher · View at Google Scholar
  85. A. R. King, J. E. Pringle, and J. A. Hofmann, “The evolution of black hole mass and spin in active galactic nuclei,” Monthly Notices of the Royal Astronomical Society, vol. 385, no. 3, pp. 1621–1627, 2008. View at Publisher · View at Google Scholar
  86. P. F. Hopkins and E. Quataert, “An analytic model of angular momentum transport by gravitational torques: from galaxies to massive black holes,” Monthly Notices of the Royal Astronomical Society, vol. 415, no. 2, pp. 1027–1050, 2011. View at Publisher · View at Google Scholar
  87. R. Genzel, R. Schödel, T. Ott et al., “The stellar cusp around the supermassive black hole in the Galactic center,” Astrophysical Journal, vol. 594, no. 2 I, pp. 812–832, 2003. View at Publisher · View at Google Scholar
  88. A. M. Ghez, S. Salim, S. D. Hornstein et al., “Stellar orbits around the galactic center black hole,” Astrophysical Journal, vol. 620, no. 2 I, pp. 744–757, 2005. View at Publisher · View at Google Scholar
  89. Y. Levin and A. M. Beloborodov, “Stellar disk in the Galactic center: a remnant of a dense accretion disk?” Astrophysical Journal, vol. 590, no. 1, pp. L33–L36, 2003. View at Publisher · View at Google Scholar
  90. S. Nayakshin and R. Sunyaev, “The “missing” young stellar objects in the central parsec of the Galaxy: evidence for star formation in a massive accretion disc and a top-heavy initial mass function,” Monthly Notices of the Royal Astronomical Society, vol. 364, no. 1, pp. L23–L27, 2005. View at Publisher · View at Google Scholar
  91. S. Nayakshin, “Massive stars in subparsec rings around galactic centres,” Monthly Notices of the Royal Astronomical Society, vol. 372, no. 1, pp. 143–150, 2006. View at Publisher · View at Google Scholar
  92. Y. Levin, “Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band,” Monthly Notices of the Royal Astronomical Society, vol. 374, no. 2, pp. 515–524, 2007. View at Publisher · View at Google Scholar
  93. C. Y. Kuo, J. A. Braatz, J. J. Condon et al., “The megamaser cosmology project. III. Accurate masses of seven supermassive black holes in active galaxies with circumnuclear megamaser disks,” Astrophysical Journal, vol. 727, no. 1, 2011. View at Publisher · View at Google Scholar
  94. L. J. Greenhill and C. R. Gwinn, “VLBI imaging of water maser emission from a nuclear disk in NGC 1068,” Astrophysics and Space Science, vol. 248, no. 1-2, pp. 261–267, 1997.
  95. L. J. Greenhill, P. T. Kondratko, J. E. J. Lovell et al., “The discovery of H2O maser emission in seven active galactic nuclei and at high velocities in the Circinus galaxy,” Astrophysical Journal, vol. 582, no. 1, pp. L11–L14, 2003. View at Publisher · View at Google Scholar
  96. P. T. Kondratko, L. J. Greenhill, and J. M. Moran, “Evidence for a geometrically thick self-gravitating accretion disk in NGC 3079,” Astrophysical Journal, vol. 618, no. 2 I, pp. 618–634, 2005. View at Publisher · View at Google Scholar
  97. M. Milosavljević and D. Merritt, “Formation of galactic nuclei,” Astrophysical Journal, vol. 563, no. 1, pp. 34–62, 2001. View at Publisher · View at Google Scholar
  98. M. Dotti, M. Volonteri, A. Perego, M. Colpi, M. Ruszkowski, and F. Haardt, “Dual black holes in merger remnants - II. Spin evolution and gravitational recoil,” Monthly Notices of the Royal Astronomical Society, vol. 402, no. 1, pp. 682–690, 2010. View at Publisher · View at Google Scholar
  99. M. Dotti, M. Colpi, F. Haardt, and L. Mayer, “Supermassive black hole binaries in gaseous and stellar circumnuclear discs: orbital dynamics and gas accretion,” Monthly Notices of the Royal Astronomical Society, vol. 379, no. 3, pp. 956–962, 2007. View at Publisher · View at Google Scholar
  100. J. E. Pringle, “Self-induced warping of accretion discs,” Monthly Notices of the Royal Astronomical Society, vol. 281, no. 1, pp. 357–361, 1996.
  101. D. Syer and C. J. Clarke, “Satellites in disks: regulating the accretion luminosity,” Monthly Notices of the Royal Astronomical Society, vol. 277, p. 758, 1995.
  102. P. B. Ivanov, J. C. B. Papaloizou, and A. G. Polnarev, “The evolution of a supermassive binary caused by an accretion disc,” Monthly Notices of the Royal Astronomical Society, vol. 307, no. 1, pp. 79–90, 1999.