About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2006 (2006), Article ID 48132, 15 pages
http://dx.doi.org/10.1155/AAA/2006/48132

Gantmacher-Kreĭn theorem for 2 nonnegative operators in spaces of functions

Mechanics and Mathematics Faculty, Belarusian State University, Pr. Independence 4, Minsk 220050, Belarus

Received 26 June 2005; Accepted 1 July 2005

Copyright © 2006 O. Y. Kushel and P. P. Zabreiko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. A. Alekhno and P. P. Zabreiko, “Quasipositive elements and indecomposable operators in ideal spaces. II,” Vestsī Natsyyanal'naĭ Akadèmīī Navuk Belarusī. Seryya Fīzīka-Matèmatychnykh Navuk, no. 1, pp. 5–10, 124, 2003. View at MathSciNet
  2. T. Andô, “Positive linear operators in semi-ordered linear spaces,” Journal of the Faculty of Science, Hokkaido University. Series I., vol. 13, pp. 214–228, 1957. View at Zentralblatt MATH · View at MathSciNet
  3. F. R. Gantmacher and M. G. Kreĭn, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen mechanischer Systeme, vol. 5 of Wissenschaftliche Bearbeitung der deutschen Ausgabe: Alfred Stöhr. Mathematische Lehrbücher und Monographien, I. Abteilung, Akademie, Berlin, 1960. View at Zentralblatt MATH · View at MathSciNet
  4. T. Ichinose, “Operators on tensor products of Banach spaces,” Transactions of the American Mathematical Society, vol. 170, pp. 197–219, 1972. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. T. Ichinose, “Operational calculus for tensor products of linear operators in Banach spaces,” Hokkaido Mathematical Journal, vol. 4, no. 2, pp. 306–334, 1975. View at Zentralblatt MATH · View at MathSciNet
  6. T. Ichinose, “Spectral properties of tensor products of linear operators. I,” Transactions of the American Mathematical Society, vol. 235, pp. 75–113, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. T. Ichinose, “Spectral properties of tensor products of linear operators. II. The approximate point spectrum and Kato essential spectrum,” Transactions of the American Mathematical Society, vol. 237, pp. 223–254, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. M. A. Krasnosel'skij, Je. A. Lifshits, and A. V. Sobolev, Positive Linear Systems. The Method of Positive Operators, vol. 5 of Sigma Series in Applied Mathematics, Heldermann, Berlin, 1989. View at Zentralblatt MATH · View at MathSciNet
  9. H. P. Lotz, “Über das Spektrum positiver Operatoren,” Mathematische Zeitschrift, vol. 108, no. 1, pp. 15–32, 1968. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. T.-W. Ma, Classical Analysis on Normed Spaces, World Scientific, New Jersey, 1995. View at Zentralblatt MATH · View at MathSciNet
  11. F. Niiro and I. Sawashima, “On the spectral properties of positive irreducible operators in an arbitrary Banach lattice and problems of H. H. Schaefer,” Scientific Papers of the College of Arts and Sciences. The University of Tokyo, vol. 16, pp. 145–183, 1966. View at Zentralblatt MATH · View at MathSciNet
  12. I. Sawashima, “On spectral properties of some positive operators,” Natural Science Report of the Ochanomizu University, vol. 15, pp. 53–64, 1964. View at Zentralblatt MATH · View at MathSciNet
  13. C. Stéphanos, “Sur une extension du calculus des substitutions linéaires,” Journal de Mathematiques Pures et Appliquees (5), vol. 6, pp. 73–128, 1900.
  14. P. P. Zabreiko and S. V. Smitskikh, “A theorem of M. G. Krein and M. A. Rutman,” Functional Analysis and Its Applications, vol. 13, pp. 222–223, 1980. View at Zentralblatt MATH