Abstract

The aim of this paper, firstly, is to construct generating functions of ūĚĎě -Euler numbers and polynomials of higher order by applying the fermionic ūĚĎĚ -adic ūĚĎě -Volkenborn integral, secondly, to define multivariate ūĚĎě -Euler zeta function (Barnes-type Hurwitz ūĚĎě -Euler zeta function) and ūĚĎô -function which interpolate these numbers and polynomials at negative integers, respectively. We give relation between Barnes-type Hurwitz ūĚĎě -Euler zeta function and multivariate ūĚĎě -Euler ūĚĎô -function. Moreover, complete sums of products of these numbers and polynomials are found. We give some applications related to these numbers and functions as well.

1. Introduction, Definitions, and Notations

Let ūĚĎĚ be a fixed odd prime. Throughout this paper, ‚Ą§ ūĚĎĚ , ‚Ąö ūĚĎĚ , ‚Ąā , and ‚Ąā ūĚĎĚ will, respectively, denote the ring of ūĚĎĚ -adic rational integers, the field of ūĚĎĚ -adic rational numbers, the complex number field, and the completion of the algebraic closure of ‚Ąö ūĚĎĚ . ‚Ą§ + = ‚Ą§ + ‚ą™ { 0 } . Let ūĚĎ£ ūĚĎĚ be the normalized exponential valuation of ‚Ąā ūĚĎĚ with | ūĚĎĚ | ūĚĎĚ = ūĚĎĚ ‚ąí ūĚĎ£ ūĚĎĚ ( ūĚĎĚ ) = 1 / ūĚĎĚ (cf. [128]). When we talk about ūĚĎě -extensions, ūĚĎě is variously considered as an indeterminate, either a complex ūĚĎě ‚ąą ‚Ąā , or a ūĚĎĚ -adic number ūĚĎě ‚ąą ‚Ąā ūĚĎĚ . If ūĚĎě ‚ąą ‚Ąā , we assume that | ūĚĎě | < 1 . If ūĚĎě ‚ąą ‚Ąā ūĚĎĚ , then we assume | ūĚĎě ‚ąí 1 | ūĚĎĚ < ūĚĎĚ ‚ąí 1 / ( ūĚĎĚ ‚ąí 1 ) so that ūĚĎě ūĚĎ• = e x p ( ūĚĎ• l o g ūĚĎě ) for | ūĚĎ• | ūĚĎĚ ‚ȧ 1 .

For a fixed positive integer ūĚĎĎ with ( ūĚĎĚ , ūĚĎĎ ) = 1 , set ūĚēŹ ūĚĎĎ = l i m ‚Üź ūĚĎĀ ‚Ą§ / ūĚĎĎ ūĚĎĚ ūĚĎĀ ‚Ą§ , ūĚēŹ 1 = ‚Ą§ ūĚĎĚ , ( 1 ) ūĚēŹ ‚ąó = ‚čÉ 0 < ūĚĎé < ūĚĎĎ ūĚĎĚ ÓÄ∑ ūĚĎé , ūĚĎĚ ÓÄł = 1 ( ūĚĎé + ūĚĎĎ ūĚĎĚ ‚Ą§ ūĚĎĚ ) , ūĚĎé + ūĚĎĎ ūĚĎĚ ūĚĎĀ ‚Ą§ ūĚĎĚ = ÓÄĹ ūĚĎ• ‚ąą ūĚēŹ ‚ą∂ ūĚĎ• ‚Č° ūĚĎé ( m o d ūĚĎĎ ūĚĎĚ ūĚĎĀ ) ÓÄĺ , ( 1 . 1 ) where ūĚĎé ‚ąą ‚Ą§ satisfies the condition 0 ‚ȧ ūĚĎé < ūĚĎĎ ūĚĎĚ ūĚĎĀ (cf. [128]).

The distribution ūĚúá ūĚĎě ( ūĚĎé + ūĚĎĎ ūĚĎĚ ūĚĎĀ ‚Ą§ ūĚĎĚ ) is given as ūĚúá ūĚĎě ( ūĚĎé + ūĚĎĎ ūĚĎĚ ūĚĎĀ ‚Ą§ ūĚĎĚ ) = ūĚĎě ūĚĎé ÓāÉ ūĚĎĎ ūĚĎĚ ūĚĎĀ ÓāĄ ūĚĎě ( 1 . 2 ) (cf. [4, 10]).

We say that ūĚĎď is a uniformly differentiable function at a point ūĚĎé ‚ąą ‚Ą§ ūĚĎĚ ; we write ūĚĎď ‚ąą U D ( ‚Ą§ ūĚĎĚ ) if the difference quotient ūĚźĻ ūĚĎď ( ūĚĎ• , ūĚ϶ ) = ūĚĎď ( ūĚĎ• ) ‚ąí ūĚĎď ( ūĚ϶ ) ūĚĎ• ‚ąí ūĚ϶ ( 1 . 3 ) has a limit ūĚĎď ÓÖě ( ūĚĎé ) as ( ūĚĎ• , ūĚ϶ ) ‚Üí ( ūĚĎé , ūĚĎé ) . Let ūĚĎď ‚ąą U D ( ‚Ą§ ūĚĎĚ ) . An invariant ūĚĎĚ -adic ūĚĎě -integral is defined by ūĚźľ ūĚĎě ( ūĚĎď ) = ÓÄú ‚Ą§ ūĚĎĚ ūĚĎď ( ūĚĎ• ) ūĚĎĎ ūĚúá ūĚĎě ( ūĚĎ• ) = l i m ūĚĎĀ ‚Üí ‚ąě 1 [ ūĚĎĚ ūĚĎĀ ] ūĚĎě ūĚĎĚ ūĚĎĀ ‚ąí 1 ÓĀď ūĚĎ• = 0 ūĚĎď ( ūĚĎ• ) ūĚĎě ūĚĎ• ( 1 . 4 ) (cf. [4, 5, 10, 29, 30]).

The ūĚĎě -extension of ūĚĎõ ‚ąą ‚Ąē is defined by [ ūĚĎõ ] ūĚĎě = 1 ‚ąí ūĚĎě ūĚĎõ 1 ‚ąí ūĚĎě . ( 1 . 5 ) We note that l i m ūĚĎě ‚Üí 1 [ ūĚĎõ ] ūĚĎě = ūĚĎõ .

Classical Euler numbers are defined by means of the following generating function: 2 ūĚĎí ūĚĎ° + 1 = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ ūĚĎ° ūĚĎõ ūĚĎõ ! , ( 1 . 6 ) (cf. [13, 5, 8, 9, 15, 16, 18, 19, 20, 23, 28, 30]), where ūĚźł ūĚĎõ denotes classical Euler numbers. These numbers are interpolated by the Euler zeta function which is defined as follows: ūĚúĀ ūĚźł ( ūĚφ ) = ‚ąě ÓĀď ūĚĎõ = 1 ( ‚ąí 1 ) ūĚĎõ ūĚĎõ ūĚφ , ūĚφ ‚ąą ‚Ąā , ( 1 . 7 ) (cf. [8, 9, 24, 25, 28]).

ūĚĎě -Euler numbers and polynomials have been studied by many mathematicians. These numbers and polynomials are very important in number theory, mathematical analysis and statistics, and the other areas.

In [16], Ozden and Simsek constructed extensions of ūĚĎě -Euler numbers and polynomials. In [8], Kim et al. constructed new ūĚĎě -Euler numbers and polynomials which are different from Ozden and Simsek [16].

In [31], Kim gave a detailed proof of fermionic ūĚĎĚ -adic ūĚĎě -measures on ‚Ą§ ūĚĎĚ . He treated some interesting formulae related ūĚĎě -extension of Euler numbers and polynomials. He defined fermionic ūĚĎĚ -adic ūĚĎě -measures on ‚Ą§ ūĚĎĚ as follows: ūĚúá ‚ąí ūĚĎě ( ūĚĎé + ūĚĎĎ ūĚĎĚ ūĚĎĀ ‚Ą§ ūĚĎĚ ) = ( ‚ąí ūĚĎě ) ūĚĎé ÓāÉ ūĚĎĎ ūĚĎĚ ūĚĎĀ ÓāĄ ‚ąí ūĚĎě , ( 1 . 8 ) where [ ūĚĎõ ] ‚ąí ūĚĎě = 1 ‚ąí ( ‚ąí ūĚĎě ) ūĚĎõ 1 + ūĚĎě ( 1 . 9 ) (cf. [1, 31]).

By using the fermionic ūĚĎĚ -adic ūĚĎě -measures, he defined the fermionic ūĚĎĚ -adic ūĚĎě -integral on ‚Ą§ ūĚĎĚ as follows: ūĚźľ ‚ąí ūĚĎě ( ūĚĎď ) = ÓÄú ‚Ą§ ūĚĎĚ ūĚĎď ( ūĚĎ• ) ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ) = l i m ūĚĎĀ ‚Üí ‚ąě 1 ÓāÉ ūĚĎĚ ūĚĎĀ ÓāĄ ‚ąí ūĚĎě ūĚĎĚ ūĚĎĀ ‚ąí 1 ÓĀď ūĚĎ• = 0 ūĚĎď ( ūĚĎ• ) ( ‚ąí ūĚĎě ) ūĚĎ• ( 1 . 1 0 ) (cf. [31]).

Observe that ūĚźľ ‚ąí ūĚĎě ( ūĚĎď ) can be written symbolically as l i m ūĚĎě ‚Üí ‚ąí ūĚĎě ūĚźľ ūĚĎě ( ūĚĎď ) = ūĚźľ ‚ąí ūĚĎě ( ūĚĎď ) ( 1 . 1 1 ) (cf. [31]).

By using fermionic ūĚĎĚ -adic ūĚĎě -integral on ‚Ą§ ūĚĎĚ , Kim et al. [8] defined the generating function of the ūĚĎě -Euler numbers as follows: ūĚźĻ ūĚĎě ( ūĚĎ° ) = ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! , ( 1 . 1 2 ) where ūĚźł ūĚĎõ , ūĚĎě denotes ūĚĎě -Euler numbers.

Witt's formula of ūĚźł ūĚĎõ ( ūĚĎ• , ūĚĎě ) was given by Kim et al. [8]: ūĚźł ūĚĎõ ( ūĚĎ• , ūĚĎě ) = ÓÄú ‚Ą§ ūĚĎĚ ÓÄ∑ ūĚĎ• + ūĚ϶ ÓÄł ūĚĎõ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚ϶ ) , ( 1 . 1 3 ) where ūĚĎě ‚ąą ‚Ąā ūĚĎĚ and | 1 ‚ąí ūĚĎě | ūĚĎĚ < 1 .

In [16], Ozden and Simsek defined generating function of ūĚĎě -Euler numbers by ūĚźĻ ( ūĚĎ° , ūĚĎě ) = 2 ūĚĎě ūĚĎí ūĚĎ° + 1 = 2 ūĚĎě + 1 ūĚźĻ ūĚĎě ( ūĚĎ° ) . ( 1 . 1 4 )

In [7, 9], Kim defined ūĚĎě - ūĚĎô -functions and ūĚĎě -multiple ūĚĎô -functions. He also gave many applications of these functions.

We summarize our paper as follows. In Section 2, we give some fundamental properties of the ūĚĎě -Euler numbers and polynomials. We also give some relations related to these numbers and polynomials. By using generating functions of ūĚĎě -Euler numbers and polynomials of higher order, we define multivariate ūĚĎě -Euler zeta function (Barnes-type Hurwitz ūĚĎě -Euler zeta function) and ūĚĎô -function which interpolate these numbers and polynomials at negative integers. We also give contour integral representation of these functions. In Section 3, we find relation between ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) and ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ , ūĚĎ• ) . By using these relations, we obtain distribution relations of the generalized ūĚĎě -Euler numbers and polynomials of higher order. In Section 4, we find complete sums of products of these numbers and polynomials. We also give some applications related to these numbers and functions.

2. Some Properties of ūĚĎě -Euler Numbers and Polynomials

For ūĚĎě ‚ąą ‚Ąā with | ūĚĎě | < 1 , ūĚźĻ ūĚĎě ( ūĚĎ° ) = ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! ( 2 . 1 ) (cf. [8]), where ūĚźł ūĚĎõ , ūĚĎě denotes the ūĚĎě -Euler number and | ūĚĎ° + l o g ūĚĎě | < ūĚúč .

Observe that by (2.1) we have ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 = 1 + ūĚĎě ‚ąí 1 ūĚĎí ūĚĎ° + ūĚĎě ‚ąí 1 = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźĽ ūĚĎõ ÓāÄ ‚ąí ūĚĎě ‚ąí 1 ÓāĀ ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 2 . 2 ) From (2.1) and (2.2), we note that ūĚźĽ ūĚĎõ ( ‚ąí ūĚĎě ‚ąí 1 ) = ūĚźł ūĚĎõ , ūĚĎě , where ūĚźĽ ūĚĎõ ( ‚ąí ūĚĎě ‚ąí 1 ) are called Frobenius Euler numbers (cf. [27, 28]).

The ūĚĎě -Euler polynomials are also defined by means of the following generating function [8]: ūĚźĻ ūĚĎě ( ūĚĎ° , ūĚĎ• ) = ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ūĚĎí ūĚĎ• ūĚĎ° = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) ūĚĎ° ūĚĎõ ūĚĎõ ! , ( 2 . 3 ) where | ūĚĎ° + l o g ūĚĎě | < ūĚúč ; ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ūĚĎí ūĚĎ• ūĚĎ° = ūĚĎí ūĚźł ūĚĎě ( ūĚĎ• ) ūĚĎ° , ÓÄ∑ ūĚĎě + 1 ÓÄł ūĚĎí ūĚĎ• ūĚĎ° = ūĚĎě ūĚĎí ( 1 + ūĚźł ūĚĎě ( ūĚĎ• ) ) ūĚĎ° + ūĚĎí ūĚźł ūĚĎě ( ūĚĎ• ) ūĚĎ° , ÓÄ∑ ūĚĎě + 1 ÓÄł ‚ąě ÓĀď ūĚĎõ = 0 ūĚĎ• ūĚĎõ ūĚĎ° ūĚĎõ ūĚĎõ ! = ‚ąě ÓĀď ūĚĎõ = 0 ÓāÄ ūĚĎě ÓāÄ 1 + ūĚźł ūĚĎě ( ūĚĎ• ) ÓāĀ ūĚĎõ + ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) ÓāĀ ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 2 . 4 ) By comparing the coefficients of ūĚĎ° ūĚĎõ on both sides of the above equation, we have the following theorem.

Theorem 2.1. Let ūĚĎõ be nonnegative integer. Then ūĚĎě ÓāÄ 1 + ūĚźł ūĚĎě ( ūĚĎ• ) ÓāĀ ūĚĎõ + ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) = ÓÄ∑ ūĚĎě + 1 ÓÄł ūĚĎ• ūĚĎõ , ( 2 . 5 ) with the usual convention about replacing ūĚźł ūĚĎõ ūĚĎě ( ūĚĎ• ) by ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) . By using (2.5), we have ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) + ūĚĎě ūĚĎõ ÓĀď ūĚĎė = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎė ‚éě ‚éü ‚éü ‚é† ūĚźł ūĚĎė , ūĚĎě ( ūĚĎ• ) = ÓÄ∑ ūĚĎě + 1 ÓÄł ūĚĎ• ūĚĎõ . ( 2 . 6 ) From (2.3), by applying Cauchy product and using (2.1), we also obtain ( ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! ) ( ‚ąě ÓĀď ūĚĎõ = 0 ūĚĎ• ūĚĎõ ūĚĎ° ūĚĎõ ūĚĎõ ! ) = ‚ąě ÓĀď ūĚĎõ = 0 ( ‚ąě ÓĀď ūĚĎė = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎė ‚éě ‚éü ‚éü ‚é† ūĚĎ• ūĚĎõ ‚ąí ūĚĎė ūĚźł ūĚĎė , ūĚĎě ) ūĚĎ° ūĚĎõ ūĚĎõ ! = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 2 . 7 ) By comparing the coefficients of ūĚĎ° ūĚĎõ on both sides of the above equation, we have ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) = ūĚĎõ ÓĀď ūĚĎė = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎė ‚éě ‚éü ‚éü ‚é† ūĚĎ• ūĚĎõ ‚ąí ūĚĎė ūĚźł ūĚĎė , ūĚĎě ( 2 . 8 ) (cf. [8, 14]).

By using Theorem 2.1 and [8, equation (3)], we obtain ūĚźł ūĚĎõ ( ūĚĎ• , ūĚĎě ) = ÓÄú ‚Ą§ ūĚĎĚ ÓÄ∑ ūĚĎ• + ūĚ϶ ÓÄł ūĚĎõ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚ϶ ) = l i m ūĚĎĀ ‚Üí ‚ąě 1 ÓāÉ ūĚĎó ūĚĎĚ ūĚĎĀ ÓāĄ ‚ąí ūĚĎě ūĚĎó ūĚĎĚ ūĚĎĀ ‚ąí 1 ÓĀď ūĚĎ• = 0 ÓÄ∑ ūĚĎ• + ūĚ϶ ÓÄł ūĚĎõ ( ‚ąí ūĚĎě ) ūĚĎ• = 1 ÓÄļ ūĚĎó ÓÄĽ ‚ąí ūĚĎě l i m ūĚĎĀ ‚Üí ‚ąě 1 ÓāÉ ūĚĎĚ ūĚĎĀ ÓāĄ ( ‚ąí ūĚĎě ) ūĚĎó ūĚĎó ‚ąí 1 ÓĀď ūĚĎ• = 0 ūĚĎó ūĚĎĚ ūĚĎĀ ‚ąí 1 ÓĀď ūĚĎ• = 0 ( ūĚĎé + ūĚĎó ūĚĎ• + ūĚ϶ ) ūĚĎõ ( ‚ąí ūĚĎě ) ūĚĎé + ūĚĎó ūĚĎ• = ūĚĎó ūĚĎõ ÓÄļ ūĚĎó ÓÄĽ ‚ąí ūĚĎě l i m ūĚĎĀ ‚Üí ‚ąě 1 ÓāÉ ūĚĎĚ ūĚĎĀ ÓāĄ ( ‚ąí ūĚĎě ) ūĚĎó ūĚĎó ‚ąí 1 ÓĀď ūĚĎé = 0 ( ‚ąí ūĚĎě ) ūĚĎé ūĚĎĚ ūĚĎĀ ‚ąí 1 ÓĀď ūĚĎ• = 0 ( ūĚĎé + ūĚ϶ ūĚĎó + ūĚĎ• ) ūĚĎõ ÓāÄ ( ‚ąí ūĚĎě ) ūĚĎó ÓāĀ ūĚĎ• = ūĚĎó ūĚĎõ ÓÄļ ūĚĎó ÓÄĽ ‚ąí ūĚĎě ūĚĎó ‚ąí 1 ÓĀď ūĚĎé = 0 ( ‚ąí ūĚĎě ) ūĚĎé l i m ūĚĎĀ ‚Üí ‚ąě 1 ÓāÉ ūĚĎĚ ūĚĎĀ ÓāĄ ( ‚ąí ūĚĎě ) ūĚĎó ūĚĎĚ ūĚĎĀ ‚ąí 1 ÓĀď ūĚĎ• = 0 ( ūĚĎé + ūĚ϶ ūĚĎó + ūĚĎ• ) ūĚĎõ ÓāÄ ( ‚ąí ūĚĎě ) ūĚĎó ÓāĀ ūĚĎ• = ūĚĎó ūĚĎõ ÓÄļ ūĚĎó ÓÄĽ ‚ąí ūĚĎě ūĚĎó ‚ąí 1 ÓĀď ūĚĎé = 0 ( ‚ąí ūĚĎě ) ūĚĎé ūĚźł ūĚĎõ ( ūĚĎé + ūĚ϶ ūĚĎó , ūĚĎě ūĚĎó ) . ( 2 . 9 )

By using the above equation, we arrive at the following theorem.

Theorem 2.2. Let ūĚĎó be odd. Then ūĚźł ūĚĎõ , ūĚĎě ( ūĚĎ• ) = ( ūĚĎě + 1 ) ūĚĎó ūĚĎõ ūĚĎě ūĚĎó + 1 ūĚĎó ‚ąí 1 ÓĀď ūĚĎé = 0 ( ‚ąí 1 ) ūĚĎé ūĚĎě ūĚĎé ūĚźł ūĚĎõ , ūĚĎě ūĚĎó ( ūĚĎé + ūĚĎ• ūĚĎó ) . ( 2 . 1 0 )

By simple calculation in (2.3), Ryoo et al. [14] give another proof of Theorem 2.2, which is given as follows: let ūĚĎó be odd; ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ ( ūĚĎ• ) ūĚĎ° ūĚĎõ ūĚĎõ ! = ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ūĚĎí ūĚĎ• ūĚĎ° = ūĚĎě + 1 1 + ūĚĎě ūĚĎó ūĚĎí ūĚĎó ūĚĎ° ūĚĎó ‚ąí 1 ÓĀď ūĚĎé = 0 ( ‚ąí 1 ) ūĚĎé ūĚĎě ūĚĎé ūĚĎí ūĚĎé ūĚĎ° ūĚĎí ūĚĎ• ūĚĎ° = ( ūĚĎě + 1 ) ūĚĎó ‚ąí 1 ÓĀď ūĚĎé = 0 ( ‚ąí 1 ) ūĚĎé ūĚĎě ūĚĎé ( ūĚĎí ( ūĚĎé + ūĚĎ• ) ūĚĎ° 1 + ūĚĎě ūĚĎó ūĚĎí ūĚĎó ūĚĎ° ) ūĚĎě ūĚĎó + 1 ūĚĎě ūĚĎó + 1 = ‚ąě ÓĀď ūĚĎõ = 0 ( ūĚĎě + 1 ūĚĎě ūĚĎó + 1 ūĚĎó ūĚĎõ ūĚĎĎ ‚ąí 1 ÓĀď ūĚĎé = 0 ( ‚ąí 1 ) ūĚĎé ūĚĎě ūĚĎé ūĚźł ūĚĎõ , ūĚĎě ūĚĎó ( ūĚĎé + ūĚĎ• ūĚĎó ) ) ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 2 . 1 1 ) By comparing the coefficients of ūĚĎ° ūĚĎõ on both sides of the above equation, we have Theorem 2.2.

By substituting ūĚĎ• = ūĚĎõ , with ūĚĎõ ‚ąą ‚Ą§ + into (2.3), then we have ūĚźĻ ūĚĎě ( ūĚĎ° , ūĚĎõ ) = ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ūĚĎí ūĚĎõ ūĚĎ° = ‚ąě ÓĀď ūĚĎė = 0 ūĚźł ūĚĎė , ūĚĎě ( ūĚĎõ ) ūĚĎ° ūĚĎė ūĚĎė ! . ( 2 . 1 2 ) Thus, ūĚźĻ ūĚĎě ( ūĚĎ° ) ‚ąí ūĚĎě ūĚĎõ ( ‚ąí 1 ) ūĚĎõ ūĚźĻ ūĚĎě ( ūĚĎ° , ūĚĎõ ) = ( ūĚĎě + 1 ) ‚ąě ÓĀď ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎô ūĚĎě ūĚĎô ūĚĎí ūĚĎô ūĚĎ° ‚ąí ( ūĚĎě + 1 ) ‚ąě ÓĀď ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎô + ūĚĎõ ūĚĎě ūĚĎô + ūĚĎõ ūĚĎí ūĚĎ° ( ūĚĎô + ūĚĎõ ) = ( ūĚĎě + 1 ) ūĚĎõ ‚ąí 1 ÓĀď ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎô ūĚĎě ūĚĎô ūĚĎí ūĚĎô ūĚĎ° + ( ūĚĎě + 1 ) ‚ąě ÓĀď ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎô + ūĚĎõ ūĚĎě ūĚĎô + ūĚĎõ ūĚĎí ūĚĎ° ( ūĚĎô + ūĚĎõ ) ‚ąí ( ūĚĎě + 1 ) ‚ąě ÓĀď ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎô + ūĚĎõ ūĚĎě ūĚĎô + ūĚĎõ ūĚĎí ūĚĎ° ( ūĚĎô + ūĚĎõ ) . ( 2 . 1 3 ) Hence, by (2.13), we have ūĚźĻ ūĚĎě ( ūĚĎ° ) ‚ąí ūĚĎě ūĚĎõ ( ‚ąí 1 ) ūĚĎõ ūĚźĻ ūĚĎě ( ūĚĎ° , ūĚĎõ ) = ( ūĚĎě + 1 ) ūĚĎõ ‚ąí 1 ÓĀď ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎô ūĚĎě ūĚĎô ūĚĎí ūĚĎô ūĚĎ° . ( 2 . 1 4 ) By the generating function of ūĚĎě -Euler numbers and polynomials and by (2.14), we see that ‚ąě ÓĀď ūĚĎö = 0 ÓāÄ ūĚźł ūĚĎö , ūĚĎě ‚ąí ūĚĎě ūĚĎõ ( ‚ąí 1 ) ūĚĎõ ūĚźł ūĚĎö , ūĚĎě ( ūĚĎõ ) ÓāĀ ūĚĎ° ūĚĎö ūĚĎö ! = ‚ąě ÓĀď ūĚĎö = 0 ( ( ūĚĎě + 1 ) ūĚĎõ ‚ąí 1 ÓĀď ūĚĎô = 0 ūĚĎě ūĚĎô ( ‚ąí 1 ) ūĚĎô ūĚĎô ūĚĎö ) ūĚĎ° ūĚĎö ūĚĎö ! . ( 2 . 1 5 ) By comparing the coefficients of ūĚĎ° ūĚĎõ on both sides of (2.15), we obtain the following alternating sums of powers of consecutive ūĚĎě -integers as follows.

Theorem 2.3 (see [14]). Let ūĚĎõ ‚ąą ‚Ą§ + . Then ūĚźł ūĚĎö , ūĚĎě ‚ąí ūĚĎě ūĚĎõ ( ‚ąí 1 ) ūĚĎõ ūĚźł ūĚĎö , ūĚĎě ( ūĚĎõ ) ūĚĎě + 1 = ūĚĎõ ‚ąí 1 ÓĀď ūĚĎô = 0 ūĚĎě ūĚĎô ( ‚ąí 1 ) ūĚĎô ūĚĎô ūĚĎö . ( 2 . 1 6 )

Remark 2.4. Proof of Theorem 2.3 is similar to that of [14]. If we take ūĚĎě ‚Üí 1 in (2.16), we have ūĚźł ūĚĎö ‚ąí ( ‚ąí 1 ) ūĚĎõ ūĚźł ūĚĎö ( ūĚĎõ ) 2 = ūĚĎõ ‚ąí 1 ÓĀď ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎô ūĚĎô ūĚĎö . ( 2 . 1 7 )

The above formula is well known in the number theory and its applications.

Remark 2.5. Generating function of the ūĚĎě -Euler numbers in this paper is different than that in [29, 31]. It is same as in [8]. Consequently, all these generating functions in [8, 16, 29, 31] produce different-type ūĚĎě -Euler numbers. But we observe that all these generating functions were obtained by the same fermionic ūĚĎĚ -adic ūĚĎě -measures on ‚Ą§ ūĚĎĚ and the fermionic ūĚĎĚ -adic ūĚĎě -integral on ‚Ą§ ūĚĎĚ ; for applications of this integral and measure see for detail [2, 4, 8, 1419, 23, 25, 29, 30, 31].

Now, we consider ūĚĎě -Euler numbers and polynomials of higher order as follows: ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ‚čĮ ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ÓĄŅ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÉ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖĆ ūĚĎü t i m e s = ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ūĚĎü = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! , ( 2 . 1 8 ) where ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě are called ūĚĎě -Euler numbers of order ūĚĎü . We also consider ūĚĎě -Euler polynomials of order ūĚĎü as follows: ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ‚čĮ ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ūĚĎí ūĚĎ° ūĚĎ• = ( ūĚĎě + 1 ) ūĚĎü ūĚĎí ūĚĎ° ūĚĎ• ( ūĚĎě ūĚĎí ūĚĎ° + 1 ) ūĚĎü = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) ūĚĎ° ūĚĎõ ūĚĎõ ! , ( 2 . 1 9 ) where | ūĚĎ° + l o g ūĚĎě | < ūĚúč . From these generating functions of ūĚĎě -Euler numbers and polynomials of higher order, we construct multiple ūĚĎě -Euler zeta functions. First, we investigate the properties of generating function of ūĚĎě -Euler polynomials of higher order as follows: ūĚźĻ ( ūĚĎü ) ūĚĎě ( ūĚĎ° , ūĚĎ• ) = ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ‚čĮ ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ÓĄŅ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÉ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖĆ ūĚĎü t i m e s ūĚĎí ūĚĎ° ūĚĎ• = ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ūĚĎě ūĚĎó ūĚĎí ūĚĎ° ūĚĎ• ‚ąě ÓĀď ūĚĎõ 1 = 0 ( ‚ąí 1 ) ūĚĎõ 1 ūĚĎě ūĚĎõ 1 ūĚĎí ūĚĎõ 1 ūĚĎ° ‚čĮ ‚ąě ÓĀď ūĚĎõ ūĚĎü = 0 ( ‚ąí 1 ) ūĚĎõ ūĚĎü ūĚĎě ūĚĎõ ūĚĎü ūĚĎí ūĚĎõ ūĚĎü ūĚĎ° = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 0 ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎí ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü + ūĚĎ• ÓÄł ūĚĎ° = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 2 . 2 0 )

By applying Mellin transformation to (2.20), we have 1 őď ( ūĚφ ) ‚ąę ‚ąě 0 ūĚĎ° ūĚφ ‚ąí 1 ūĚźĻ ( ūĚĎü ) ūĚĎě ( ūĚĎ° , ūĚĎ• ) ūĚĎĎ ūĚĎ° = ‚ąě ‚ąĎ ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 0 ūĚĎü ‚ąĎ ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† 1 őď ( ūĚφ ) ‚ąę ‚ąě 0 ūĚĎ° ūĚφ ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎí ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü + ūĚĎ• ÓÄł ūĚĎ° ūĚĎĎ ūĚĎ° . ( 2 . 2 1 ) After some elementary calculations, we obtain 1 őď ( ūĚφ ) ÓÄú ‚ąě 0 ūĚĎ° ūĚφ ‚ąí 1 ūĚźĻ ( ūĚĎü ) ūĚĎě ( ‚ąí ūĚĎ° , ūĚĎ• ) ūĚĎĎ ūĚĎ° = ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ūĚĎě ūĚĎó ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 0 ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 0 ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü + ūĚĎ• ÓÄł ūĚφ = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 0 ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü + ūĚĎ• ÓÄł ūĚφ . ( 2 . 2 2 )

From (2.22), we define the analytic function which interpolates higher-order ūĚĎě -Euler numbers at negative integers as follows.

Definition 2.6. For ūĚφ ‚ąą ‚Ąā , ūĚĎ• ‚ąą ‚ĄĚ ( 0 < ūĚĎ• ‚ȧ 1 ) , one defines ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ , ūĚĎ• ) = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 0 ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü + ūĚĎ• ÓÄł ūĚφ . ( 2 . 2 3 ) ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ , ūĚĎ• ) is called Barnes-type Hurwitz ūĚĎě -Euler zeta function.

Remark 2.7. By applying the ūĚĎė th derivative operator ūĚĎĎ ūĚĎė / ūĚĎĎ ūĚĎ° ūĚĎė | ūĚĎ° = 0 on both sides of (2.20), we have ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) = ūĚĎĎ ūĚĎė ūĚĎĎ ūĚĎ° ūĚĎė ūĚźĻ ūĚĎü ūĚĎě ( ūĚĎ° , ūĚĎ• ) | | ūĚĎ° = 0 = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , . . . , ūĚĎõ ūĚĎü = 0 ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓāÄ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü + ūĚĎ• ÓāĀ ūĚĎė . ( 2 . 2 4 ) By using the above equation, Ryoo et al. [14] and Simsek [23] also define (2.23).

By substituting ūĚφ = ‚ąí ūĚĎė , ūĚĎė ‚ąą ‚Ą§ + into (2.23) and using (2.24), after some calculations, we arrive at the following theorem.

Theorem 2.8. Let ūĚĎė ‚ąą ‚Ą§ + . Then ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ‚ąí ūĚĎė , ūĚĎ• ) = ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) . ( 2 . 2 5 )

Observe that the function ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ , ūĚĎ• ) interpolates ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) polynomial at negative integers. By using the complex integral representation of generating function of the polynomials ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) , we have 1 őď ( ūĚφ ) ÓÄü ūĚź∂ ūĚĎ° ūĚφ ‚ąí 1 ūĚźĻ ( ūĚĎü ) ūĚĎě ( ‚ąí ūĚĎ° , ūĚĎ• ) ūĚĎĎ ūĚĎ° = ‚ąě ÓĀď ūĚĎõ = 0 ( ‚ąí 1 ) ūĚĎõ ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) ūĚĎõ ! 1 őď ( ūĚφ ) ÓÄü ūĚź∂ ūĚĎ° ūĚĎõ + ūĚφ ‚ąí 1 ūĚĎĎ ūĚĎ° , ( 2 . 2 6 ) where ūĚź∂ is Hankel's contour along the cut joining the points ūĚĎß = 0 and ūĚĎß = ‚ąě on the real axis, which starts from the point at ‚ąě , encircles the origin ( ūĚĎß = 0 ) once in the positive (counter-clockwise) direction, and returns to the point at ‚ąě (see for detail [13, 17, 25, 28]). By using (2.26)) and Cauchy-Residue theorem, then we arrive at (2.25).

Remark 2.9. ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ , 1 ) = ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ ) is called Barnes-type ūĚĎě -Euler zeta function; see for detail [14]. ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ , ūĚĎ• ) is an analytic function in whole complex ūĚφ -plane. For ūĚφ ‚ąą ūĚź∂ , ūĚúĀ ūĚĎü ūĚźł ( ūĚφ , ūĚĎ• ) = l i m ūĚĎě ‚Üí 1 ūĚúĀ ūĚĎü ūĚĎě , ūĚźł ( ūĚφ , ūĚĎ• ) = 2 ūĚĎü ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 0 ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓāÄ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü + ūĚĎ• ÓāĀ ūĚφ . ( 2 . 2 7 ) If ūĚĎü = 1 in the above equation, we have ūĚúĀ ūĚźł ( ūĚφ , ūĚĎ• ) = 2 ‚ąě ÓĀď ūĚĎõ = 0 ( ‚ąí 1 ) ūĚĎõ ÓÄ∑ ūĚĎõ + ūĚĎ• ÓÄł ūĚφ . ( 2 . 2 8 ) The function ūĚúĀ ūĚźł ( ūĚφ , ūĚĎ• ) is known as classical Hurwitz-type zeta function which interpolates classical Euler numbers at negative integers, cf. [28].

Let ūĚúí be Dirichlet's character with conductor ūĚĎĎ ‚ąą ‚Ą§ + . The generalized ūĚĎě -Euler numbers attached to ūĚúí of higher order are defined by ūĚźĻ ūĚĎě , ūĚúí ( ūĚĎ° ) = ( ūĚĎě + 1 ) ‚ąĎ ūĚĎĎ ūĚĎé = 1 ( ‚ąí 1 ) ūĚĎé ūĚĎě ūĚĎé ūĚúí ( ūĚĎé ) ūĚĎí ūĚĎ° ūĚĎé ūĚĎě ūĚĎĎ ūĚĎí ūĚĎĎ ūĚĎ° + 1 = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚúí ūĚĎ° ūĚĎõ ūĚĎõ ! ( 2 . 2 9 ) (cf. [8]), where | ūĚĎ° + l o g ūĚĎĎ | < ūĚúč . The ūĚĎě -Euler numbers attached to ūĚúí of higher order are defined by ūĚźĻ ( ūĚĎü ) ūĚĎě , ūĚúí ( ūĚĎ° ) = ( ( ūĚĎě + 1 ) ‚ąĎ ūĚĎĎ ūĚĎé = 1 ( ‚ąí 1 ) ūĚĎé ūĚĎě ūĚĎé ūĚúí ( ūĚĎé ) ūĚĎí ūĚĎ° ūĚĎé ūĚĎě ūĚĎĎ ūĚĎí ūĚĎĎ ūĚĎ° + 1 ) ūĚĎü = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě , ūĚúí ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 2 . 3 0 ) From (2.30), we obtain ūĚźĻ ( ūĚĎü ) ūĚĎě , ūĚúí ( ūĚĎ° ) = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 1 ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎí ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄł ūĚĎ° ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎõ ūĚĎė ) = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě , ūĚúí ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 2 . 3 1 ) By applying the ūĚĎė th derivative operator ūĚĎĎ ūĚĎė / ūĚĎĎ ūĚĎ° ūĚĎė | ūĚĎ° = 0 in (2.31), we have ūĚźł ( ūĚĎü ) ūĚĎė , ūĚĎě , ūĚúí = ūĚĎĎ ūĚĎė ūĚĎĎ ūĚĎ° ūĚĎė ūĚźĻ ( ūĚĎü ) ūĚĎě , ūĚúí ( ūĚĎ° ) | | ūĚĎ° = 0 = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 1 ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄł ūĚĎė ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎõ ūĚĎė ) . ( 2 . 3 2 ) By using (2.32), we define Dirichlet-type multiple Euler ūĚĎě - ūĚĎô -function as follows.

Definition 2.10. Let ūĚφ ‚ąą ‚Ąā ; ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 1 ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ūĚĎě ūĚĎó + ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ‚ąŹ ūĚĎü ūĚĎė = 1 ūĚúí ( ūĚĎõ ūĚĎė ) ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄł ūĚφ . ( 2 . 3 3 )

Remark 2.11. ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) is an analytic function in the whole complex ūĚφ -plane. From the above definition, ūĚĎô ( ūĚĎü ) ūĚźł ( ūĚφ , ūĚúí ) = l i m ūĚĎě ‚Üí 1 ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) = ‚ąě ÓĀď ūĚĎõ 1 , ūĚĎõ 2 , ‚Ķ , ūĚĎõ ūĚĎü = 1 2 ( ‚ąí 1 ) ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ‚ąŹ ūĚĎü ūĚĎė = 1 ūĚúí ( ūĚĎõ ūĚĎė ) ÓÄ∑ ūĚĎõ 1 + ‚čĮ + ūĚĎõ ūĚĎü ÓÄł ūĚφ . ( 2 . 3 4 ) For ūĚĎü = 1 in the above equation, we have ūĚĎô ūĚźł ( ūĚφ , ūĚúí ) = ‚ąě ÓĀď ūĚĎõ = 1 2 ( ‚ąí 1 ) ūĚĎõ ūĚúí ( ūĚĎõ ) ūĚĎõ ūĚφ . ( 2 . 3 5 ) This function is called Euler ūĚĎô -function.
Here, we observe that by applying Mellin transformation to (2.31), we obtain 1 őď ( ūĚφ ) ÓÄú ‚ąě 0 ūĚĎ° ūĚφ ‚ąí 1 ūĚźĻ ( ūĚĎü ) ūĚĎě , ūĚúí ( ‚ąí ūĚĎ° ) ūĚĎĎ ūĚĎ° = ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) . ( 2 . 3 6 ) This gives us another definition of (2.32).

By substituting ūĚφ = ‚ąí ūĚĎė , ūĚĎė ‚ąą ‚Ą§ + into (2.33) and using (2.32), we arrive at the following theorem.

Theorem 2.12. Let ūĚĎė ‚ąą ‚Ą§ + . Then ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ‚ąí ūĚĎė , ūĚúí ) = ūĚźł ( ūĚĎü ) ūĚĎė , ūĚĎě , ūĚúí . ( 2 . 3 7 )

We note that l i m ūĚĎě ‚Üí 1 ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ‚ąí ūĚĎė , ūĚúí ) = ūĚĎô ( ūĚĎü ) ūĚźł ( ‚ąí ūĚĎė , ūĚúí ) = ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚúí , ( 2 . 3 8 ) where ūĚźł ūĚĎõ , ūĚúí are called classical Euler numbers attached to ūĚúí of higher order, cf. [28]. By using (2.26), (2.36), we obtain another proof of (2.37).

3. Relation between ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) and ūĚúĀ ( ūĚĎü ) ūĚĎě , ūĚźł ( ūĚφ , ūĚĎ• )

Substituting ūĚĎõ ūĚĎó = ūĚĎé ūĚĎó + ūĚĎö ūĚĎó ūĚĎď , where ūĚĎö ūĚĎó = 0 , 1 , 2 , 3 , ‚Ķ , ‚ąě and ūĚĎé ūĚĎó = 1 , 2 , ‚Ķ , ūĚĎď , where ūĚúí ( ūĚĎé ūĚĎó + ūĚĎö ūĚĎó ūĚĎď ) = ūĚúí ( ūĚĎé ūĚĎó ) and ūĚĎď is odd conductor of ūĚúí , 1 ‚ȧ ūĚĎó ‚ȧ ūĚĎü , into (2.33), we have ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) = ( 1 + ūĚĎě ) ūĚĎü ūĚĎď ÓĀď ūĚĎé 1 , ūĚĎé 2 , ‚Ķ , ūĚĎé ūĚĎü = 1 ‚ąě ÓĀď ūĚĎö 1 , ūĚĎö 2 , ‚Ķ , ūĚĎö ūĚĎü = 0 ( ‚ąí 1 ) ūĚĎé 1 + ūĚĎö 1 ūĚĎď + ‚čĮ + ūĚĎé ūĚĎü + ūĚĎö ūĚĎü ūĚĎď ūĚĎě ūĚĎé 1 + ūĚĎö 1 ūĚĎď + ‚čĮ + ūĚĎé ūĚĎü + ūĚĎö ūĚĎü ūĚĎď ‚ąŹ ūĚĎü ūĚĎė = 1 ūĚúí ( ūĚĎé ūĚĎė + ūĚĎö ūĚĎė ūĚĎď ) ÓÄ∑ ūĚĎé 1 + ūĚĎö 1 ūĚĎď + ‚čĮ + ūĚĎé ūĚĎü + ūĚĎö ūĚĎü ūĚĎď ÓÄł ūĚφ = ( 1 + ūĚĎě ) ūĚĎü ūĚĎď ‚ąí ūĚφ ( 1 + ūĚĎě ūĚĎď ) ūĚĎü ūĚĎď ÓĀď ūĚĎé 1 , ūĚĎé 2 , ‚Ķ , ūĚĎé ūĚĎü = 1 ( ‚ąí 1 ) ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎě ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎé ūĚĎė ) √ó ÓāÄ 1 + ūĚĎě ūĚĎď ÓāĀ ūĚĎü ‚ąě ÓĀď ūĚĎö 1 , ūĚĎö 2 , ‚Ķ , ūĚĎö ūĚĎü = 0 ( ‚ąí 1 ) ūĚĎö 1 + ‚čĮ + ūĚĎö ūĚĎü ūĚĎě ūĚĎď ūĚĎ£ + ūĚĎö 1 ūĚĎď + ‚čĮ + ūĚĎö ūĚĎü ūĚĎď ( ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎď + ūĚĎö 1 + ‚čĮ + ūĚĎö ūĚĎü ) ūĚφ . ( 3 . 1 ) By substituting (2.23) into the above equation, we arrive at the following theorem.

Theorem 3.1. Let ūĚúí be a Dirichlet character with conductor ūĚĎď ( = ūĚĎú ūĚĎĎ ūĚĎĎ ) . Then ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ūĚφ , ūĚúí ) = ( 1 + ūĚĎě ) ūĚĎü ūĚĎď ‚ąí ūĚφ ( 1 + ūĚĎě ūĚĎď ) ūĚĎü ūĚĎď ÓĀď ūĚĎé 1 , ūĚĎé 2 , ‚Ķ , ūĚĎé ūĚĎü = 1 ( ‚ąí 1 ) ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎě ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎé ūĚĎė ) ūĚúĀ ( ūĚĎü ) ūĚĎě ūĚĎď , ūĚźł ( ūĚφ , ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎď ) . ( 3 . 2 )

By substituting ūĚφ = ‚ąí ūĚĎė , ūĚĎė ‚ąą ‚Ą§ , into (3.2), we obtain ūĚĎô ( ūĚĎü ) ūĚźł , ūĚĎě ( ‚ąí ūĚĎė , ūĚúí ) = ( 1 + ūĚĎě ) ūĚĎü ūĚĎď ūĚĎė ( 1 + ūĚĎě ūĚĎď ) ūĚĎü ūĚĎď ÓĀď ūĚĎé 1 , ūĚĎé 2 , ‚Ķ , ūĚĎé ūĚĎü = 1 ( ‚ąí 1 ) ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎě ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎé ūĚĎė ) ūĚúĀ ( ūĚĎü ) ūĚĎě ūĚĎď , ūĚźł ( ‚ąí ūĚĎė , ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎď ) . ( 3 . 3 ) By using (2.25) and (2.37) in the above equation, we obtain distribution relation of the ūĚĎě -Euler numbers attached to ūĚúí of higher order, ūĚźł ( ūĚĎü ) ūĚĎė , ūĚĎě , ūĚúí , which is given as follows.

Theorem 3.2. The following holds: ūĚźł ( ūĚĎü ) ūĚĎė , ūĚĎě , ūĚúí = ( 1 + ūĚĎě ) ūĚĎü ūĚĎď ūĚĎė ( 1 + ūĚĎě ūĚĎď ) ūĚĎü ūĚĎď ÓĀď ūĚĎé 1 , ūĚĎé 2 , ‚Ķ , ūĚĎé ūĚĎü = 1 ( ‚ąí 1 ) ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎě ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎé ūĚĎė ) ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ūĚĎď ( ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎď ) . ( 3 . 4 )

4. Multivariate ūĚĎĚ -Adic Fermionic ūĚĎě -Integral on ‚Ą§ ūĚĎĚ Associated with Higher-Order ūĚĎě -Euler Numbers

In [14], Ryoo et al. defined ūĚĎě -extension of Euler numbers and polynomials of higher order. They studied Barnes-type ūĚĎě -Euler zeta functions. They also derived sums of products of ūĚĎě -Euler numbers and polynomials by using fermionic ūĚĎĚ -adic ūĚĎě -integral. In this section, we assume that ūĚĎě ‚ąą ‚Ąā ūĚĎĚ with | 1 ‚ąí ūĚĎě | ūĚĎĚ < 1 . By using (1.4), the ūĚĎĚ -adic fermionic ūĚĎě -integral on ‚Ą§ ūĚĎĚ is defined by ūĚźľ ‚ąí ūĚĎě ( ūĚĎď ) = ÓÄú ‚Ą§ ūĚĎĚ ūĚĎď ( ūĚĎ• ) ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ) = l i m ūĚĎĀ ‚Üí ‚ąě 1 ÓāÉ ūĚĎĚ ūĚĎĀ ÓāĄ ‚ąí ūĚĎě ūĚĎĚ ūĚĎĀ ‚ąí 1 ÓĀď ūĚĎ• = 0 ūĚĎď ÓÄ∑ ūĚĎ• ÓÄł ( ‚ąí ūĚĎě ) ūĚĎ• . ( 4 . 1 ) From this integral equation, we have (see [1, 2, 4]) ūĚĎě ūĚźľ ‚ąí ūĚĎě ( ūĚĎď 1 ) + ūĚźľ ‚ąí ūĚĎě ( ūĚĎď ) = ( ūĚĎě + 1 ) ūĚĎď ( 0 ) , ( 4 . 2 ) where ūĚĎď 1 ( ūĚĎ• ) = ūĚĎď ( ūĚĎ• + 1 ) . If we take ūĚĎď ( ūĚĎ• ) = ūĚĎí ūĚĎ° ūĚĎ• in (4.2), we have ūĚźľ ‚ąí ūĚĎě ( ūĚĎí ūĚĎ° ūĚĎ• ) = ÓÄú ‚Ą§ ūĚĎĚ ūĚĎí ūĚĎ° ūĚĎ• ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ) = ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! ( 4 . 3 ) (cf. [8]).

Now we are ready to give multivariate ūĚĎĚ -adic fermionic ūĚĎě -integral on ‚Ą§ ūĚĎĚ as follows (see for detail [14]). Let ÓÄú ‚Ą§ ūĚĎü ūĚĎĚ = ÓÄú ‚Ą§ ūĚĎĚ ÓÄú ‚Ą§ ūĚĎĚ ‚čĮ ÓÄú ‚Ą§ ūĚĎĚ ÓĄŅ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÉ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖĆ ūĚĎü t i m e s ÓÄú ‚Ą§ ūĚĎü ūĚĎĚ ūĚĎí ūĚĎ° ( ūĚĎ• 1 + ‚čĮ + ūĚĎ• ūĚĎü ) ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) = ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ‚čĮ ( ūĚĎě + 1 ūĚĎě ūĚĎí ūĚĎ° + 1 ) ÓĄŅ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÉ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖĆ ūĚĎü t i m e s = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 4 . 4 ) From (4.4), we obtain Witt's formula for ūĚĎě -Euler numbers of higher order as follows.

Theorem 4.1 (see [14]). Let ūĚĎė ‚ąą ‚Ą§ + . Then ÓÄú ‚Ą§ ūĚĎü ūĚĎĚ ( ūĚĎ• 1 + ‚čĮ + ūĚĎ• ūĚĎü ) ūĚĎõ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) = ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě . ( 4 . 5 )

By (4.4), we obtain ÓÄú ‚Ą§ ūĚĎü ūĚĎĚ ūĚĎí ūĚĎ° ( ūĚĎ• 1 + ‚čĮ + ūĚĎ• ūĚĎü + ūĚĎ• ) ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) = ūĚĎí ūĚĎ• ūĚĎ° ( ūĚĎě + 1 ) ūĚĎü ÓÄ∑ ūĚĎě ūĚĎí ūĚĎ° + 1 ÓÄł ‚čĮ ÓÄ∑ ūĚĎě ūĚĎí ūĚĎ° + 1 ÓÄł ÓĄŅ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÉ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖÄ ÓÖĆ ūĚĎü t i m e s = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 4 . 6 )

Theorem 4.2 (multinomial theorem). The following holds: ( ūĚĎ£ ÓĀď ūĚĎó = 1 ūĚĎ• ūĚĎó ) ūĚĎõ = ÓĀď ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎ£ ‚Č• 0 ūĚĎô 1 + ūĚĎô 2 + ‚čĮ + ūĚĎô ūĚĎ£ = ūĚĎõ ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎ£ ‚éě ‚éü ‚éü ‚é† ūĚĎ£ ÓĀĎ ūĚĎé = 1 ūĚĎ• ūĚĎô ūĚĎé ūĚĎé , ( 4 . 7 ) where ( ūĚĎõ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎ£ ) are the multinomial coefficients, which are defined by ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎ£ ‚éě ‚éü ‚éü ‚é† = ūĚĎõ ! ūĚĎô 1 ! ūĚĎô 2 ! ‚Ķ ūĚĎô ūĚĎ£ ! ( 4 . 8 ) (cf. [32, 33]).

Now we give a main theorem of this section, which is called complete sums of products of ūĚĎě -Euler polynomials of higher order.

Theorem 4.3. For positive integers ūĚĎõ , ūĚĎü , one has ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ÓāÄ ūĚ϶ 1 + ūĚ϶ 2 + ‚čĮ + ūĚ϶ ūĚĎü ÓāĀ = ÓĀď ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎü ‚Č• 0 ūĚĎô 1 + ūĚĎô 2 + ‚čĮ + ūĚĎô ūĚĎü = ūĚĎõ ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎü ‚éě ‚éü ‚éü ‚é† ūĚĎü ÓĀĎ ūĚĎó = 1 ūĚźł ūĚĎô ūĚĎó , ūĚĎě ( ūĚ϶ ūĚĎó ) , ( 4 . 9 ) where ( ūĚĎõ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎü ) is the multinomial coefficient.

Proof. The proof of this theorem is similar to that of [23]. By using Taylor series of ūĚĎí ūĚĎ° ūĚĎ• into (4.6), and ūĚĎ• by ūĚ϶ 1 + ūĚ϶ 2 + ‚čĮ + ūĚ϶ ūĚĎü , then we have ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ÓāÄ ūĚ϶ 1 + ūĚ϶ 2 + ‚čĮ + ūĚ϶ ūĚĎü ÓāĀ = ÓÄú ‚Ą§ ūĚĎĚ ‚čĮ ÓÄú ‚Ą§ ūĚĎĚ ( ūĚĎü ÓĀď ūĚĎó = 1 ( ūĚ϶ ūĚĎó + ūĚĎ• ūĚĎó ) ) ūĚĎõ ūĚĎü ÓĀĎ ūĚĎó = 1 ūĚĎĎ ūĚúá ‚ąí ūĚĎě ÓāÄ ūĚĎ• ūĚĎó ÓāĀ . ( 4 . 1 0 ) By using (4.7) in the above equation, and after some elementary calculations, we get ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ÓāÄ ūĚ϶ 1 + ūĚ϶ 2 + ‚čĮ + ūĚ϶ ūĚĎü ÓāĀ = ‚ąĎ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎü ‚Č• 0 ūĚĎô 1 + ūĚĎô 2 + ‚čĮ + ūĚĎô ūĚĎü = ūĚĎõ ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎ£ ‚éě ‚éü ‚éü ‚é† ūĚĎü ‚ąŹ ūĚĎó = 1 ‚ąę ‚Ą§ ūĚĎĚ ÓāÄ ūĚ϶ ūĚĎó + ūĚĎ• ūĚĎó ÓāĀ ūĚĎô ūĚĎó ūĚĎĎ ūĚúá ‚ąí ūĚĎě ÓāÄ ūĚĎ• ūĚĎó ÓāĀ . ( 4 . 1 1 ) By substituting (2.25) into the above equation, we arrive at the desired result.

By substituting (2.8) into (4.9), then Theorem 4.3 reduces to the following theorem.

Theorem 4.4. For positive integers ūĚĎõ , ūĚĎü , one has ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ÓāÄ ūĚ϶ 1 + ūĚ϶ 2 + ‚čĮ + ūĚ϶ ūĚĎü ÓāĀ = ÓĀď ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎü ‚Č• 0 ūĚĎô 1 + ūĚĎô 2 + ‚čĮ + ūĚĎô ūĚĎü = ūĚĎõ ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎü ‚éě ‚éü ‚éü ‚é† ūĚĎü ÓĀĎ ūĚĎó = 1 ūĚĎô ūĚĎó ÓĀď ūĚĎė = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎô ūĚĎó ūĚĎė ‚éě ‚éü ‚éü ‚é† ūĚ϶ ūĚĎô ūĚĎó ‚ąí ūĚĎė ūĚĎó ūĚźł ūĚĎô ūĚĎó , ūĚĎě . ( 4 . 1 2 )

In (4.10), if we replace ūĚ϶ 1 + ūĚ϶ 2 + ‚čĮ + ūĚ϶ ūĚĎü by ūĚĎ• , then we obtain the following corollary.

Corollary 4.5. For ūĚĎõ ‚Č• 0 , one has ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) = ÓÄú ‚Ą§ ūĚĎü ūĚĎĚ ÓāÄ ūĚĎ• 1 + ‚čĮ + ūĚĎ• ūĚĎü + ūĚĎ• ÓāĀ ūĚĎö ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) = ÓĀď ūĚĎô 1 + ‚čĮ + ūĚĎô ūĚĎü + ūĚĎô ūĚĎü + 1 = ūĚĎö ‚éõ ‚éú ‚éú ‚éĚ ūĚĎö ūĚĎô 1 ‚čĮ ūĚĎô ūĚĎü + 1 ‚éě ‚éü ‚éü ‚é† ÓÄú ‚Ą§ ūĚĎĚ ūĚĎ• ūĚĎô 1 1 ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ÓÄú ‚Ą§ ūĚĎĚ ūĚĎ• ūĚĎô ūĚĎü ūĚĎü ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) ūĚĎ• ūĚĎô ūĚĎü + 1 = ÓĀď ūĚĎô 1 + ‚čĮ + ūĚĎô ūĚĎü + ūĚĎô ūĚĎü + 1 = ūĚĎö ‚éõ ‚éú ‚éú ‚éĚ ūĚĎö ūĚĎô 1 ‚čĮ ūĚĎô ūĚĎü + 1 ‚éě ‚éü ‚éü ‚é† ūĚźł ūĚĎô 1 , ūĚĎě ūĚźł ūĚĎô 2 , ūĚĎě ‚čĮ ūĚźł ūĚĎô ūĚĎü , ūĚĎě ūĚĎ• ūĚĎô ūĚĎü + 1 . ( 4 . 1 3 )

Remark 4.6. By using (4.5)–(4.7), complete sums of products of ūĚĎě -Euler polynomials of higher order are also obtained. Proof of Corollary 4.5 was also given by Ryoo et al. [14], which is given by ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě ( ūĚĎ• ) = ūĚĎõ ÓĀď ūĚĎė = 0 ÓĀď ūĚĎô 1 + ‚čĮ + ūĚĎô ūĚĎü + ūĚĎô ūĚĎü + 1 = ūĚĎö ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎė ‚éě ‚éü ‚éü ‚é† ‚éõ ‚éú ‚éú ‚éĚ ūĚĎė ūĚĎô 1 ‚čĮ ūĚĎô ūĚĎü + 1 ‚éě ‚éü ‚éü ‚é† ūĚĎ• ūĚĎõ ‚ąí ūĚĎė ūĚźł ūĚĎô 1 , ūĚĎě ūĚźł ūĚĎô 2 , ūĚĎě ‚čĮ ūĚźł ūĚĎô ūĚĎü , ūĚĎě . ( 4 . 1 4 ) In (4.13), if we take ūĚĎě ‚Üí 1 , we have ūĚźł ( ūĚĎü ) ūĚĎõ ( ūĚĎ• ) = ÓĀď ūĚĎô 1 + ‚čĮ + ūĚĎô ūĚĎü + ūĚĎô ūĚĎü + 1 = ūĚĎö ‚éõ ‚éú ‚éú ‚éĚ ūĚĎö ūĚĎô 1 ‚čĮ ūĚĎô ūĚĎü + 1 ‚éě ‚éü ‚éü ‚é† ūĚźł ūĚĎô 1 ūĚźł ūĚĎô 2 ‚čĮ ūĚźł ūĚĎô ūĚĎü ūĚĎ• ūĚĎô ūĚĎü + 1 . ( 4 . 1 5 ) For more detailed information about complete sums of products of Euler polynomials and Bernoulli polynomials, see also [11, 14, 2024, 34, 35].

Let ūĚúí be a Dirichlet character with conductor ūĚĎĎ ‚ąą ‚Ą§ + . Then ÓÄú ūĚēŹ ūĚúí ( ūĚĎ• ) ūĚĎí ūĚĎ° ūĚĎ• ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ) = ( ūĚĎě + 1 ) ‚ąĎ ūĚĎĎ ‚ąí 1 ūĚĎô = 0 ( ‚ąí 1 ) ūĚĎĎ ‚ąí 1 ‚ąí ūĚĎô ūĚĎě ūĚĎô ūĚĎí ūĚĎ° ūĚĎô ūĚúí ( ūĚĎ• ) ūĚĎí ūĚĎĎ ūĚĎ° ūĚĎě ūĚĎĎ + 1 = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ūĚĎõ , ūĚúí , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 4 . 1 6 )

By using Taylor expansion of ūĚĎí ūĚĎ° ūĚĎ• and then comparing coefficients of ūĚĎ° ūĚĎõ on both sides, we arrive at ÓÄú ūĚēŹ ūĚúí ( ūĚĎ• ) ūĚĎ• ūĚĎõ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ) = ūĚźł ūĚĎõ , ūĚúí , ūĚĎě ( 4 . 1 7 ) (cf. [8]).

By (4.16), we have ÓÄú ūĚēŹ ūĚĎü ūĚĎü ÓĀĎ ūĚĎĖ = 1 ūĚúí ( ūĚĎ• ūĚĎĖ ) ūĚĎí ūĚĎ° ( ūĚĎ• 1 + ‚čĮ + ūĚĎ• ūĚĎü ) ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) = ÓÄú ūĚēŹ ūĚĎü ūĚĎü ÓĀĎ ūĚĎĖ = 1 ūĚúí ( ūĚĎ• ūĚĎĖ ) ūĚĎí ūĚĎ° ( ūĚĎ• 1 + ‚čĮ + ūĚĎ• ūĚĎü ) ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) = ( ‚ąĎ ūĚĎĎ ‚ąí 1 ūĚĎé = 0 ( ‚ąí 1 ) ūĚĎĎ ‚ąí 1 ‚ąí ūĚĎé ūĚĎě ūĚĎé ūĚĎí ūĚĎ° ūĚĎé ūĚúí ( ūĚĎé ) ūĚĎí ūĚĎĎ ūĚĎ° ūĚĎě ūĚĎĎ + 1 ) ūĚĎü ūĚĎü ÓĀď ūĚĎó = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎü ūĚĎó ‚éě ‚éü ‚éü ‚é† ūĚĎě ūĚĎó = ‚ąě ÓĀď ūĚĎõ = 0 ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚúí , ūĚĎě ūĚĎ° ūĚĎõ ūĚĎõ ! . ( 4 . 1 8 ) Thus we give Witt-type formula of ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚúí , ūĚĎě as follows.

Theorem 4.7. Let ūĚúí be a Dirichlet character with conductor ūĚĎĎ ‚ąą ‚Ąē and let ūĚĎö ‚Č• 0 . Then ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚúí , ūĚĎě = ÓÄú ūĚēŹ ūĚĎü ÓāÄ ūĚĎ• 1 + ‚čĮ + ūĚĎ• ūĚĎü ÓāĀ ūĚĎö ūĚĎü ÓĀĎ ūĚĎĖ = 1 ūĚúí ( ūĚĎ• ūĚĎĖ ) ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• 1 ) ‚čĮ ūĚĎĎ ūĚúá ‚ąí ūĚĎě ( ūĚĎ• ūĚĎü ) . ( 4 . 1 9 )

By using (3.2), (2.8), we obtain ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě , ūĚúí = ūĚĎď ūĚĎõ ( 1 + ūĚĎě ) ūĚĎü ( 1 + ūĚĎě ūĚĎď ) ūĚĎü ūĚĎď ‚ąí 1 ÓĀď ūĚĎé 1 , ūĚĎé 2 , ‚Ķ , ūĚĎé ūĚĎü = 0 ( ‚ąí 1 ) ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎě ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎé ūĚĎė ) ūĚĎõ ÓĀď ūĚĎė = 0 ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎė ‚éě ‚éü ‚éü ‚é† ( ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎď ) ūĚĎõ ‚ąí ūĚĎė ūĚźł ( ūĚĎü ) ūĚĎė , ūĚĎě ūĚĎď . ( 4 . 2 0 ) By using (4.7) in the above equation, we have ūĚźł ( ūĚĎü ) ūĚĎõ , ūĚĎě , ūĚúí = ( 1 + ūĚĎě ) ūĚĎü ( 1 + ūĚĎě ūĚĎď ) ūĚĎü ūĚĎď ‚ąí 1 ÓĀď ūĚĎé 1 , ūĚĎé 2 , ‚Ķ , ūĚĎé ūĚĎü = 0 ( ‚ąí 1 ) ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎě ūĚĎé 1 + ‚čĮ + ūĚĎé ūĚĎü ūĚĎü ÓĀĎ ūĚĎė = 1 ūĚúí ( ūĚĎé ūĚĎė ) √ó ūĚĎõ ÓĀď ūĚĎė = 0 ÓĀď ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎ£ ‚Č• 0 ūĚĎô 1 + ūĚĎô 2 + ‚čĮ + ūĚĎô ūĚĎ£ = ūĚĎõ ‚ąí ūĚĎė ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ‚ąí ūĚĎė ūĚĎô 1 , ūĚĎô 2 , ‚Ķ , ūĚĎô ūĚĎ£ ‚éě ‚éü ‚éü ‚é† ‚éõ ‚éú ‚éú ‚éĚ ūĚĎõ ūĚĎė ‚éě ‚éü ‚éü ‚é† ūĚĎ£ ÓĀĎ ūĚ϶ = 1 ūĚĎé ūĚĎô ūĚ϶ ūĚ϶ ūĚĎď ūĚĎė ūĚźł ( ūĚĎü ) ūĚĎė , ūĚĎě ūĚĎď . ( 4 . 2 1 )

Acknowledgments

The first and the second authors are supported by the research fund of Uludag University Projects no. F-2006/40 and F-2008/31. The third author is supported by the research fund of Akdeniz University. The authors would like to thank the referee for their comments.