Abstract

We prove the Hyers-Ulam stability of the polynomial equation π‘Žπ‘›π‘₯𝑛+π‘Žπ‘›βˆ’1π‘₯π‘›βˆ’1+β‹―+π‘Ž1π‘₯+π‘Ž0=0. We give an affirmative answer to a problem posed by Li and Hua (2009).

1. Introduction and Preliminaries

A classical question in the theory of functional equations is that β€œwhen is it true that a function which approximately satisfies a functional equation β„° must be somehow close to an exact solution of β„°ξ…žξ…ž. Such a problem was formulated by Ulam [1] in 1940 and solved in the next year for the Cauchy functional equation by Hyers [2]. It gave rise to the stability theory for functional equations. The result of Hyers was generalized by Rassias [3]. The topic of the Hyers-Ulam stability of functional equations and its applications has been studied by a number of mathematicians; see [3–40] and references therein.

Recently, Li and Hua [41] discussed and proved the Hyers-Ulam stability of the polynomial equationπ‘₯𝑛+𝛼π‘₯+𝛽=0,(1.1) where π‘₯∈[βˆ’1,1] and proved the following.

Theorem 1.1. If |𝛼|>𝑛,|𝛽|<|𝛼|βˆ’1, and π‘¦βˆˆ[βˆ’1,1] satisfy the inequality ||𝑦𝑛||+𝛼𝑦+π›½β‰€πœ€,(1.2) then there exists a solution π‘£βˆˆ[βˆ’1,1] of (1.1) such that ||||π‘¦βˆ’π‘£β‰€πΎπœ€,(1.3) where 𝐾>0 is constant.

They also asked an open problem whether the real polynomial equationπ‘Žπ‘›π‘₯𝑛+π‘Žπ‘›βˆ’1π‘₯π‘›βˆ’1+β‹―+π‘Ž1π‘₯+π‘Ž0=0(1.4) has the Hyers-Ulam stability for the case that this real polynomial equation has some solutions in [π‘Ž,𝑏]. The aim of this paper is to give a positive answer to this problem. First of all, we give the definition of the Hyers-Ulam stability.

Definition 1.2. One says that (1.4) has the Hyers-Ulam stability if there exists a constant 𝐾>0 with the following property:
for every πœ€>0,π‘¦βˆˆ[βˆ’1,1], if ||π‘Žπ‘›π‘¦π‘›+π‘Žπ‘›βˆ’1π‘¦π‘›βˆ’1+β‹―+π‘Ž1𝑦+π‘Ž0||β‰€πœ€(1.5) then there exists some π‘§βˆˆ[βˆ’1,1] satisfying π‘Žπ‘›π‘§π‘›+π‘Žπ‘›βˆ’1π‘§π‘›βˆ’1+β‹―+π‘Ž1𝑧+π‘Ž0=0(1.6) such that |π‘¦βˆ’π‘§|β‰€πΎπœ€. One calls such 𝐾 a Hyers-Ulam stability constant for (1.4). For the complex polynomial equation, [βˆ’1,1] is replaced by closed unit disc 𝐷={π‘§βˆˆβ„‚;|𝑧|≀1}.(1.7)

2. Main Results

The aim of this work is to investigate the Hyers-Ulam stability for (1.4).

Theorem 2.1. If ||π‘Ž0||<||π‘Ž1||βˆ’ξ€·||π‘Ž2||+||π‘Ž3||||π‘Ž+β‹―+𝑛||ξ€Έ||π‘Ž,(2.1)1||||π‘Ž>22||||π‘Ž+33||||π‘Ž+β‹―+(π‘›βˆ’1)π‘›βˆ’1||||π‘Ž+𝑛𝑛||,(2.2) then there exists an exact solution π‘£βˆˆ[βˆ’1,1] of (1.4).

Proof. If we set 1𝑔(π‘₯)=π‘Ž1ξ€·βˆ’π‘Ž0βˆ’π‘Ž2π‘₯2βˆ’π‘Ž3π‘₯3βˆ’β‹―βˆ’π‘Žπ‘›βˆ’1π‘₯π‘›βˆ’1βˆ’π‘Žπ‘›π‘₯𝑛,(2.3) for π‘₯∈[βˆ’1,1], then we have ||||=1𝑔(π‘₯)||π‘Ž1||||βˆ’π‘Ž0βˆ’π‘Ž2π‘₯2βˆ’β‹―βˆ’π‘Žπ‘›βˆ’1π‘₯π‘›βˆ’1βˆ’π‘Žπ‘›π‘₯𝑛||≀1||π‘Ž1||ξ€·||π‘Ž0||+||π‘Ž2||||π‘Ž+β‹―+π‘›βˆ’1||+||π‘Žπ‘›||≀1(2.4) by (2.1).
Let 𝑋=[βˆ’1,1] and 𝑑(π‘₯,𝑦)=|π‘₯βˆ’π‘¦|. Then (𝑋,𝑑) is a complete metric space and 𝑔 maps 𝑋 to 𝑋. Now, we will show that 𝑔 is a contraction from 𝑋 to 𝑋. For any π‘₯,π‘¦βˆˆπ‘‹, we have 𝑑||||1(𝑔(π‘₯),𝑔(𝑦))=π‘Ž1ξ€·βˆ’π‘Ž0βˆ’π‘Ž2π‘₯2βˆ’β‹―βˆ’π‘Žπ‘›π‘₯π‘›ξ€Έβˆ’1π‘Ž1ξ€·βˆ’π‘Ž0βˆ’β‹―βˆ’π‘Žπ‘›π‘¦π‘›ξ€Έ||||≀1||π‘Ž1||||||ξ€½||π‘Žπ‘₯βˆ’π‘¦2||||||||π‘Žπ‘₯+𝑦+β‹―+𝑛||||π‘₯π‘›βˆ’1+β‹―+π‘¦π‘›βˆ’1||≀1||π‘Ž1||||||ξ€½2||π‘Žπ‘₯βˆ’π‘¦2||||π‘Ž+33||||π‘Ž+β‹―+(π‘›βˆ’1)π‘›βˆ’1||||π‘Ž+𝑛𝑛||ξ€Ύ.(2.5) For π‘₯,π‘¦βˆˆ[βˆ’1,1],π‘₯≠𝑦, from (2.2), we obtain 𝑑(𝑔(π‘₯),𝑔(𝑦))β‰€πœ†π‘‘(π‘₯,𝑦).(2.6) Here 2||π‘Žπœ†=2||||π‘Ž+33||||π‘Ž+β‹―+(π‘›βˆ’1)π‘›βˆ’1||||π‘Ž+𝑛𝑛||||π‘Ž1||<1.(2.7) Thus 𝑔 is a contraction from 𝑋 to 𝑋. By the Banach contraction mapping theorem, there exists a unique π‘£βˆˆπ‘‹ such that 𝑔(𝑣)=𝑣.(2.8) Hence (1.4) has a solution on [βˆ’1,1].

As an application of Rouche's theorem, we prove the following theorem for complex polynomial equationπ‘Žπ‘›π‘§π‘›+π‘Žπ‘›βˆ’1π‘§π‘›βˆ’1+β‹―+π‘Ž1𝑧+π‘Ž0=0,(2.9) which is much better than the above result. In fact, we prove the following theorem.

Theorem 2.2. If ||π‘Ž0||<||π‘Ž1||βˆ’ξ€·||π‘Ž2||+||π‘Ž3||||π‘Ž+β‹―+𝑛||ξ€Έ,(2.10) then there exists an exact solution in open unit disc for (2.9).

Proof. If we set 1𝑔(𝑧)=π‘Ž1ξ€·βˆ’π‘Ž0βˆ’π‘Ž2𝑧2βˆ’π‘Ž3𝑧3βˆ’β‹―βˆ’π‘Žπ‘›βˆ’1π‘§π‘›βˆ’1βˆ’π‘Žπ‘›π‘§π‘›ξ€Έ,(2.11) then we have ||||=1𝑔(𝑧)||π‘Ž1||||βˆ’π‘Ž0βˆ’π‘Ž2𝑧2βˆ’β‹―βˆ’π‘Žπ‘›βˆ’1π‘§π‘›βˆ’1βˆ’π‘Žπ‘›π‘§π‘›||≀1||π‘Ž1||ξ€·||π‘Ž0||+||π‘Ž2||||π‘Ž+β‹―+π‘›βˆ’1||+||π‘Žπ‘›||ξ€Έ,for|𝑧|≀1<1(2.12) by (2.10).
Since |𝑔(𝑧)|<1 for |𝑧|=1, then |𝑔(𝑧)|<|βˆ’π‘§|=1 and by Rouche's theorem, we observe that 𝑔(𝑧)βˆ’π‘§ has exactly one zero in |𝑧|<1 which implies that 𝑔 has a unique fixed point in |𝑧|<1.

Theorem 2.3. If the conditions of Theorem 2.1 hold and π‘¦βˆˆ[βˆ’1,1] satisfies the inequality ||π‘Žπ‘›π‘¦π‘›+π‘Žπ‘›βˆ’1π‘¦π‘›βˆ’1+β‹―+π‘Ž1𝑦+π‘Ž0||β‰€πœ€,(2.13) then (1.4) has the Hyers-Ulam stability.

Proof. Let πœ€>0 and π‘¦βˆˆ[βˆ’1,1] such that ||π‘Žπ‘›π‘¦π‘›+π‘Žπ‘›βˆ’1π‘¦π‘›βˆ’1+β‹―+π‘Ž1𝑦+π‘Ž0||β‰€πœ€.(2.14) We will show that there exists a constant 𝐾 independent of πœ€ and 𝑣 such that ||||π‘¦βˆ’π‘£β‰€πΎπœ€(2.15) for some π‘£βˆˆ[βˆ’1,1] satisfying (1.4).
Let us introduce the abbreviation 𝐾=1/|π‘Ž1|(1βˆ’πœ†). Then ||||=||||≀||||+||||≀||||1π‘¦βˆ’π‘£π‘¦βˆ’π‘”(𝑦)+𝑔(𝑦)βˆ’π‘”(𝑣)π‘¦βˆ’π‘”(𝑦)𝑔(𝑦)βˆ’π‘”(𝑣)π‘¦βˆ’π‘Ž1ξ€·βˆ’π‘Ž0βˆ’π‘Ž2𝑦2βˆ’β‹―βˆ’π‘Žπ‘›π‘¦π‘›ξ€Έ||||||||=1+πœ†π‘¦βˆ’π‘£||π‘Ž1||||π‘Žπ‘›π‘¦π‘›+π‘Žπ‘›βˆ’1π‘¦π‘›βˆ’1+β‹―+π‘Ž1𝑦+π‘Ž0||||||.+πœ†π‘¦βˆ’π‘£(2.16) Thus, we have ||||≀1π‘¦βˆ’π‘£||π‘Ž1||||π‘Ž(1βˆ’πœ†)𝑛𝑦𝑛+π‘Žπ‘›βˆ’1π‘¦π‘›βˆ’1+β‹―+π‘Ž1𝑦+π‘Ž0||β‰€πΎπœ€(2.17) by (2.13) and so the result follows.

Corollary 2.4. In Theorem 2.2, if there exists π‘¦βˆˆπ· satisfying the inequality (2.13), then (2.9) has the Hyers-Ulam stability.

Remark 2.5. For π‘Žπ‘›=1, π‘Žπ‘–=0, for 2β‰€π‘–β‰€π‘›βˆ’1, combining Theorems 2.1 and 2.3 gives Theorem 1.1.

Remark 2.6. By the similar way, one can easily prove the Hyers-Ulam stability of (1.4) on any finite interval [π‘Ž,𝑏].

Remark 2.7. Let 𝑓 be any complex function such that 𝑓 is analytic in Ξ”={π‘§βˆˆβ„‚βˆΆ|𝑧|βŸ¨π‘…,π‘…βŸ©0}.(2.18) It is an interesting open problem whether 𝑓 has the Hyers-Ulam stability for the case that 𝑓 has some zeros in Ξ”.

We note that there is an error in the proof of Theorem 2.2 of [41], when Li and Hua stated that if (𝑋,𝑑) is a complete metric linear space then metric 𝑑 is invariant, more precisely 𝑑(π‘₯,𝑦)=𝑑(π‘₯βˆ’π‘¦,0)(2.19) for all π‘₯,π‘¦βˆˆπ‘‹. We give a counterexample for this case. Suppose that 𝑋=ℝ, and we define metric 𝑑 on 𝑋 as follows: ||[π‘₯][𝑦])||𝑑(π‘₯,𝑦)=π‘₯+βˆ’(𝑦+,(2.20) for all π‘₯,π‘¦βˆˆπ‘‹(𝑋,𝑑) is a complete metric linear space, and 𝑑 is not an invariant metric on 𝑋, that is, there are π‘₯,π‘¦βˆˆπ‘‹ such that 𝑑(π‘₯,𝑦)≠𝑑(π‘₯βˆ’π‘¦,0).(2.21)