Abstract

Nonexistence of global solutions to ultraparabolic equations and systems is presented. Our results fill a gap in the literature on ultraparabolic equations. The method of proof we use relies on a choice of a suitable test function in the weak formulation of the solutions of the problems under-study.

1. Introduction

In this paper, we will present first nonexistence results for the two-time nonlinear equationβ„’π‘’βˆΆ=𝑒𝑑1+𝑒𝑑2βˆ’Ξ”(|𝑒|π‘š)=|𝑒|𝑝,(1.1) posed for (𝑑1,𝑑2,π‘₯)βˆˆπ‘„=(0,+∞)Γ—(0,+∞)×ℝ𝑑,π‘‘βˆˆβ„•, and subject to the initial conditions𝑒𝑑1ξ€Έ,0;π‘₯=πœ‘1𝑑1ξ€Έξ€·;π‘₯,𝑒0,𝑑2ξ€Έ;π‘₯=πœ‘2𝑑2ξ€Έ;π‘₯.(1.2) Here 𝑝>1,π‘š>0 are real numbers. Then we extend our results to systems of the form𝑒𝑑1+𝑒𝑑2βˆ’Ξ”(|𝑒|π‘š)=|𝑣|𝑝,𝑣𝑑1+𝑣𝑑2βˆ’Ξ”(|𝑣|𝑛)=|𝑒|π‘ž,(1.3) for (𝑑1,𝑑2,π‘₯)βˆˆπ‘„, subject to the initial conditions𝑒𝑑1ξ€Έ,0,π‘₯=πœ‘1𝑑1ξ€Έξ€·,π‘₯,𝑒0,𝑑2ξ€Έ,π‘₯=πœ‘2𝑑2ξ€Έ,𝑣𝑑,π‘₯1ξ€Έ,0,π‘₯=πœ“1𝑑1ξ€Έξ€·,π‘₯,𝑣0,𝑑2ξ€Έ,π‘₯=πœ“2𝑑2ξ€Έ,,π‘₯(1.4) and where 𝑝>1,π‘ž>1,π‘š>0, and𝑛>0 are real numbers. We take the nonlinearities |𝑒|𝑝 in (1.1) and (|𝑣|𝑝,|𝑒|π‘ž) in (1.3) as prototypes; we could consider much more general nonlinearities.

Before we present our results, let us dwell a while on the existing literature on nonlinear ultraparabolic parabolic equations known also as pluri-parabolic equations or multitime parabolic equations which we are aware of.These types of equations started in the case of linear equations with Kolmogoroff [1] in 1934; he introduced them in order to describe the probability density of a system with 2d degrees of freedom. A lot of generalizations have been made by a large number of authors since then. Nonlinear ultraparabolic equations arise in the kinetic theory of gases [2, 3]. Some stochastic processes models lead also to ultraparabolic equations [4–7]. The analysis of nonlinear ultraparabolic equations have been studied first by Ugowski [8] who studied differential inequalities of parabolic type with multidimensional time; he established, for example, a maximum principle which is very useful for applications. His results were reformulated, in a less general setting, by Walter in [9]. Many nice works on different aspects on ultraparabolic nonlinear equations have been conducted by Lavrenyuk and his collaborators [10–12], Lanconelli and his collaborators [13, 14], and Citti et al. [15]; see also [16, 17]. In the absence of diffusion, an interesting application is mentioned in [18]. Our equation and system have their applications in diffusion theory in porous media.

For better positioning of our results, let us recall the pioneering results of Fujita [19] and their complementary results by Hayakawa [20], Kobayashi et al. [21], and Samarskii et al. [22] concerning nonexistence results for the equationπ‘’π‘‘βˆ’Ξ”(π‘’π‘š)=|𝑒|𝑝,𝑑>0,π‘₯βˆˆβ„π‘‘,(1.5) which corresponds to (1.1) in the absence of 𝑑2 and with 𝑑1=𝑑.

In his article [19] corresponding to π‘š=1, Fujita proved that(i)if1<𝑝<1+2/𝑑, then no global positive solutions for any nonnegative initial data 𝑒0 exist;(ii)if𝑝>1+2/𝑑, global small data solutions exist while global solutions for large data do not exist.

The borderline case 𝑝=1+2/𝑑 has been decided by Hayakawa [20] for 𝑑=1,2and then by Kobayashi et al. [21] for any 𝑑β‰₯1; In case π‘š=1, the exponent 𝑝crit=1+2/𝑑 is called the critical exponent.

For (1.5), Samarskii et al. [22] showed that the critical exponent is 𝑝crit=π‘š+2/𝑑.

The aim of this paper is to obtain the critical exponent in the sense of Fujita for (1.1) and for system (1.3). Moreover, we present critical exponents for systems of two equations.

2. Results

Solutions to (1.1) subject to conditions (1.2) are meant in the following weak sense.

Definition 2.1. A function π‘’βˆˆπΏπ‘šloc(𝑄)βˆ©πΏπ‘loc(𝑄) is called a weak solution to (1.1) if ξ€œπ‘„|𝑒|π‘ξ€œπœ‘π‘‘π‘ƒ+𝑆𝑒0,𝑑2ξ€Έπœ‘ξ€·;π‘₯0,𝑑2ξ€Έ;π‘₯𝑑𝑃2+ξ€œπ‘†π‘’ξ€·π‘‘1ξ€Έπœ‘ξ€·π‘‘,0;π‘₯1ξ€Έ,0;π‘₯𝑑𝑃1ξ€œ=βˆ’π‘„π‘’πœ‘π‘‘1ξ€œπ‘‘π‘ƒβˆ’π‘„π‘’πœ‘π‘‘2ξ€œπ‘‘π‘ƒβˆ’π‘„|𝑒|π‘šΞ”πœ‘π‘‘π‘ƒ(2.1) for any test function πœ‘βˆˆπΆβˆž0(𝑄); 𝑆=ℝ+×ℝ𝑑,𝑃=(𝑑1,𝑑2,π‘₯) and 𝑃1=(𝑑1,π‘₯),  𝑃2=(𝑑2,π‘₯).

Note that every weak solution is classical near the points (𝑑1,𝑑2,π‘₯) where 𝑒(𝑑1,𝑑2,π‘₯) is positive.

Two words about the local existence of solutions are in order: as it is a rule, one regularizes (1.1) by adding first a vanishing diffusion term as follows:β„’πœ€π‘’=β„’π‘’βˆ’πœ€π·π‘‘1𝑑1,πœ€>0,(2.2) and then by regularizing the degenerate term Ξ”(|𝑒|π‘š); so, the regular equation𝑒𝑑1+𝑒𝑑2βˆ’Ξ”(min{π‘˜π‘’,|𝑒|π‘š})βˆ’πœ€π·π‘‘1𝑑1=|𝑒|𝑝,πœ€>0,π‘˜=1,2,…(2.3) is obtained. Consequently, one obtains, for small time 𝑑1, (πœ€,π‘˜)-uniform estimates of solutions, namely, estimates which are independent on the β€œparabolicity” constants of the equation as it is clearly explained in [23], see also [10, 24].

Our main first result is dealing with (1.1) subject to (1.2); it is given by the following theorem.

Theorem 2.2. Assume that βˆ«π‘†π‘’(0,𝑑2;π‘₯)𝑑𝑃2+βˆ«π‘†π‘’(𝑑1,0;π‘₯)𝑑𝑃1>0. If 1β‰€π‘š<π‘β‰€π‘š+2π‘š/(2+𝑑), then Problem (1.1)-(1.2) does not admit global weak solutions.

Proof. Our strategy of proof is to use the weak formulation of the solution with a suitable choice of the test function which we learnt from [25]. Assume 𝑒 is a global solution.
If we write π‘’πœ‘π‘‘π‘–=π‘’πœ‘1/π‘πœ‘βˆ’1/π‘πœ‘π‘‘π‘–,𝑖=1,2,(2.4) and estimate βˆ«π‘„π‘’πœ‘π‘‘π‘–π‘‘π‘ƒ using the πœ€-Young inequality, we obtain ξ€œπ‘„π‘’πœ‘π‘‘π‘–ξ€œπ‘‘π‘ƒβ‰€πœ€π‘„|𝑒|π‘πœ‘π‘‘π‘ƒ+πΆπœ€ξ€œπ‘„πœ‘βˆ’1/(π‘βˆ’1)||πœ‘π‘‘π‘–||𝑝/(π‘βˆ’1)𝑑𝑃.(2.5) Similarly, we have ξ€œπ‘„|𝑒|π‘šξ€œΞ”πœ‘π‘‘π‘ƒβ‰€πœ€π‘„|𝑒|π‘πœ‘π‘‘π‘ƒ+πΆπœ€ξ€œπ‘„πœ‘βˆ’π‘š/(π‘βˆ’π‘š)||||Ξ”πœ‘π‘/(π‘βˆ’π‘š)𝑑𝑃,(2.6) where 𝑝>π‘š.
Now, using (2.5) and (2.6), we obtain ξ€œπ‘„|𝑒|π‘ξ€œπœ‘π‘‘π‘ƒ+𝑆𝑒0,𝑑2ξ€Έπœ‘ξ€·;π‘₯0,𝑑2ξ€Έ;π‘₯𝑑𝑃2+ξ€œπ‘†π‘’ξ€·π‘‘1ξ€Έπœ‘ξ€·π‘‘,0;π‘₯1ξ€Έ,0;π‘₯𝑑𝑃1ξ€œβ‰€2πœ€π‘„|𝑒|π‘πœ‘π‘‘π‘ƒ+πΆπœ€ξ€œπ‘„ξ‚€πœ‘βˆ’1/(π‘βˆ’1)ξ‚€||πœ‘π‘‘1||𝑝/(π‘βˆ’1)+||πœ‘π‘‘2||𝑝/(π‘βˆ’1)+πœ‘βˆ’π‘š/(π‘βˆ’π‘š)||||Ξ”πœ‘π‘/(π‘βˆ’π‘š)𝑑𝑃.(2.7) If we choose πœ€=1/4, then we get the estimate ξ€œπ‘„|𝑒|π‘ξ€œπœ‘π‘‘π‘ƒ+2𝑆𝑒0,𝑑2ξ€Έπœ‘ξ€·;π‘₯0,𝑑2ξ€Έ;π‘₯𝑑𝑃2ξ€œ+2𝑆𝑒𝑑1ξ€Έπœ‘ξ€·π‘‘,0;π‘₯1ξ€Έ,0;π‘₯𝑑𝑃1ξ€œβ‰€πΆπ‘„ξ‚€πœ‘βˆ’1/(π‘βˆ’1)ξ‚€||πœ‘π‘‘1||𝑝/(π‘βˆ’1)+||πœ‘π‘‘2||𝑝/(π‘βˆ’1)+πœ‘βˆ’π‘š/(π‘βˆ’π‘š)||||Ξ”πœ‘π‘/(π‘βˆ’π‘š)𝑑𝑃=βˆΆβ„‹(πœ‘),(2.8) for some positive constant 𝐢. Observe that the right-hand side of (2.8) is free of the unknown function 𝑒.
At this stage, we introduce the smooth nonincreasing function πœƒβˆΆβ„+β†’[0,1] such that ξƒ―πœƒ(𝑧)=1,0≀𝑧≀1,0,2≀𝑧.(2.9) Let us take in (2.8) πœ‘ξ€·π‘‘1,𝑑2ξ€Έ;π‘₯=πœƒπœ†ξ‚΅π‘‘1𝑅2+𝑑2𝑅2+|π‘₯|2𝑅2ξ‚Ά,(2.10) with πœ†>π‘šπ‘Žπ‘₯{𝑝/(π‘βˆ’1),2𝑝/(π‘βˆ’π‘š)} and 𝑅 being positive real number.
Let us now pass to the new variables 𝜏1=π‘…βˆ’2𝑑1,𝜏2=π‘…βˆ’2𝑑2,𝑦=π‘…βˆ’1π‘₯.(2.11) We have πœ‘π‘‘π‘–=π‘…βˆ’2πœ‘πœπ‘–,𝑖=1,2,Ξ”π‘₯πœ‘=π‘…βˆ’2Ξ”π‘¦πœ‘.(2.12) Whereupon ξ€œπ‘„|𝑒|π‘ξ€œπœ‘π‘‘π‘ƒ+2𝑆𝑒0,𝑑2ξ€Έπœ‘ξ€·;π‘₯0,𝑑2ξ€Έ,π‘₯𝑑𝑃2ξ€œ+2𝑆𝑒𝑑1ξ€Έπœ‘ξ€·π‘‘,0;π‘₯1ξ€Έ,0,π‘₯𝑑𝑃1𝑅≀𝐿4+π‘‘βˆ’2𝑝/(π‘βˆ’1)+𝑅4+π‘‘βˆ’2𝑝/(π‘βˆ’π‘š)ξ€Έ,(2.13) with ξ€œπΏβˆΆ=𝐢Ω1ξ‚€πœƒ((πœ†βˆ’1)π‘βˆ’πœ†)/(π‘βˆ’1)||πœƒξ…ž||𝑝/(π‘βˆ’1)+||πœƒξ…ž||2𝑝/(π‘βˆ’π‘š)πœƒ((πœ†βˆ’2)π‘βˆ’πœ†π‘š)/(π‘βˆ’π‘š)+||πœƒξ…žξ…ž||𝑝/(π‘βˆ’π‘š)πœƒ((πœ†βˆ’1)π‘βˆ’πœ†π‘š)/(π‘βˆ’π‘š)<+∞,(2.14) where Ξ©1={(𝜏1,𝜏2,𝑦)∢1≀|𝜏1|+|𝜏2|+𝑦≀2}.
Now, we want to pass to the limit as 𝑅→+∞ in (2.13) under the constraint 2𝑝/(π‘βˆ’π‘š)βˆ’4βˆ’π‘‘β‰₯0. We have to consider two cases.(i)Either 2𝑝/(π‘βˆ’π‘š)βˆ’4βˆ’π‘‘>0⇔1<𝑝<π‘š+2π‘š/(2+𝑑)=𝑝crit and in this case, the right-hand side of (2.13) will go to zero while the left-hand side is positive. Contradiction.(ii)Or 𝑝=𝑝crit, and in this case, we get in particularξ€œβ„2+×ℝ𝑑|𝑒|π‘πœ‘π‘‘π‘ƒβ‰€πΆβŸΉlim𝑅→+βˆžξ€œπΆπ‘…|𝑒|π‘πœ‘π‘‘π‘ƒ=0,(2.15) where 𝐢𝑅={(𝑑1,𝑑2;π‘₯)|𝑅2≀𝑑1+𝑑2+|π‘₯|2≀2𝑅2}.
Now, to conclude, we rely on the estimate ξ€œπ‘„|𝑒|π‘ξ€œπœ‘π‘‘π‘ƒ+𝑆𝑒0,𝑑2ξ€Έπœ‘ξ€·;π‘₯0,𝑑2ξ€Έ;π‘₯𝑑𝑃2+ξ€œπ‘†π‘’ξ€·π‘‘1ξ€Έπœ‘ξ€·π‘‘,0;π‘₯1ξ€Έ,0;π‘₯𝑑𝑃1β‰€ξ‚΅ξ€œπΆπ‘…|𝑒|π‘ξ‚Άπœ‘π‘‘π‘ƒ1/𝑝ℋ(πœ‘),(2.16) which is obtained by using the HΓΆlder inequality.
Passing to the limit as 𝑅→+∞ in (2.16), we obtain ξ€œβ„2+×ℝ𝑑|𝑒|π‘ξ€œπ‘‘π‘ƒ+𝑆𝑒0,𝑑2ξ€Έ;π‘₯𝑑𝑃2+ξ€œπ‘†π‘’ξ€·π‘‘1ξ€Έ,0;π‘₯𝑑𝑃1=0.(2.17) Contradiction.

Remark 2.3. Notice that the critical exponent for the ultraparabolic equation is smaller than the one of the corresponding parabolic equation.

2.1. The Case of a 2Γ—2-System with a 2-Dimensional Time

In this section, we extend the analysis of the previous section to the case of a 2Γ—2-system of 2-time equations. More precisely, we consider the system𝑒𝑑1+𝑒𝑑2βˆ’Ξ”(|𝑒|π‘š)=|𝑣|𝑝,𝑣𝑑1+𝑣𝑑2βˆ’Ξ”(|𝑣|𝑛)=|𝑒|π‘ž,(2.18) for (𝑑1,𝑑2;π‘₯)βˆˆπ‘„, subject to the initial conditions𝑒0,𝑑2ξ€Έ,π‘₯=πœ‘1𝑑2𝑑,π‘₯,𝑒1ξ€Έ,0,π‘₯=πœ‘2𝑑1ξ€Έ,𝑣,π‘₯0,𝑑2ξ€Έ,π‘₯=πœ“1𝑑2𝑑,π‘₯,𝑣1ξ€Έ,0,π‘₯=πœ“2𝑑1ξ€Έ,,π‘₯(2.19) and where 0<π‘š<𝑝,  0<𝑛<π‘ž, and 𝑝,π‘ž>1 are real numbers.

To lighten the presentation, let us set𝐼0ξ€œβˆΆ=𝑆𝑒𝑑1ξ€Έπœ‘ξ€·π‘‘,0;π‘₯1ξ€Έ,0;π‘₯𝑑𝑃1+ξ€œπ‘†π‘’ξ€·0,𝑑2ξ€Έπœ‘ξ€·;π‘₯0,𝑑2ξ€Έ;π‘₯𝑑𝑃2,𝐽0ξ€œβˆΆ=𝑆𝑣𝑑1ξ€Έπœ‘ξ€·π‘‘,0;π‘₯1ξ€Έ,0;π‘₯𝑑𝑃1+ξ€œπ‘†π‘£ξ€·0,𝑑2ξ€Έπœ‘ξ€·;π‘₯0,𝑑2ξ€Έ;π‘₯𝑑𝑃2.(2.20) Let us start with the following definition.

Definition 2.4. We say that (𝑒,𝑣)∈(πΏπ‘žloc(𝑄)βˆ©πΏπ‘šloc(𝑄))Γ—(𝐿𝑝loc(𝑄)βˆ©πΏπ‘›loc(𝑄)) is a weak solution to system (2.18) if ξ€œπ‘„|𝑣|π‘πœ‘π‘‘π‘ƒ+𝐼0ξ€œ=βˆ’π‘„π‘’πœ‘π‘‘1ξ€œπ‘‘π‘ƒβˆ’π‘„π‘’πœ‘π‘‘2ξ€œπ‘‘π‘ƒβˆ’π‘„|𝑒|π‘šξ€œΞ”πœ‘π‘‘π‘ƒ,𝑄|𝑒|π‘žπœ‘π‘‘π‘ƒ+𝐽0ξ€œ=βˆ’π‘„π‘£πœ‘π‘‘1ξ€œπ‘‘π‘ƒβˆ’π‘„π‘£πœ‘π‘‘2ξ€œπ‘‘π‘ƒβˆ’π‘„|𝑣|π‘›Ξ”πœ‘π‘‘π‘ƒ(2.21) for any test function πœ‘βˆˆπΆβˆž0(𝑄).

Note that every weak solution is classical near the points (𝑑1,𝑑2,π‘₯) where 𝑒(𝑑1,𝑑2,π‘₯) and 𝑣(𝑑1,𝑑2,π‘₯) are positive.

Let us set𝜎1(𝑝,π‘ž)=π‘ž(2βˆ’(𝑑+2)𝑝)+4+π‘‘π‘π‘žβˆ’1,𝜎2(𝑝,π‘ž)=π‘ž(2βˆ’(𝑑+2)𝑝)+(4+𝑑)π‘š,πœŽπ‘π‘žβˆ’π‘š3π‘ž(𝑝,π‘ž)=(2π‘›βˆ’(𝑑+2)𝑝)+(4+𝑑)π‘›π‘π‘žβˆ’π‘›,𝜎4π‘ž(𝑝,π‘ž)=(2βˆ’(𝑑+2)𝑝)+(4+𝑑)π‘šπ‘›.π‘π‘žβˆ’π‘šπ‘›(2.22)

Theorem 2.5. Let 𝑝>1,β€‰β€‰π‘ž>1,  𝑝>𝑛,β€‰β€‰π‘ž>π‘š, and assume that ξ€œπ‘†π‘’ξ€·π‘‘1ξ€Έ,0;π‘₯𝑑𝑃1+ξ€œπ‘†π‘’ξ€·0,𝑑2ξ€Έ;π‘₯𝑑𝑃2ξ€œ>0,𝑆𝑣𝑑1ξ€Έ,0;π‘₯𝑑𝑃1+ξ€œπ‘†π‘£ξ€·0,𝑑2ξ€Έ;π‘₯𝑑𝑃2>0.(2.23)
Then system (2.18)-(2.19) admits no global weak solution whenever ξ€½πœŽmax1(𝑝,π‘ž),…,𝜎4(𝑝,π‘ž),𝜎1(π‘ž,𝑝),…,𝜎4ξ€Ύ(π‘ž,𝑝)≀0.(2.24)

Proof. Assume that the solution is global. Using HΓΆlder's inequality, we obtain ξ€œπ‘„|𝑒|π‘š||||ξ€œΞ”πœ‘π‘‘π‘ƒ=𝑄|𝑒|π‘šπœ‘π‘š/π‘žπœ‘βˆ’π‘š/π‘ž||||β‰€ξ‚΅ξ€œΞ”πœ‘π‘‘π‘ƒπ‘„|𝑒|π‘žξ‚Άπœ‘π‘‘π‘ƒπ‘š/π‘žξ‚΅ξ€œπ‘„πœ‘βˆ’π‘š/(π‘žβˆ’π‘š)||||Ξ”πœ‘π‘ž/(π‘žβˆ’π‘š)𝑑𝑃(π‘žβˆ’π‘š)/π‘ž,ξ€œ(2.25)π‘„π‘’πœ‘π‘‘π‘–ξ‚΅ξ€œπ‘‘π‘ƒβ‰€π‘„|𝑒|π‘žξ‚Άπœ‘π‘‘π‘ƒ1/π‘žξ‚΅ξ€œπ‘„πœ‘βˆ’1/(π‘žβˆ’1)||πœ‘π‘‘π‘–||(π‘žβˆ’1)/π‘žξ‚Άπ‘‘π‘ƒ(π‘žβˆ’1)/π‘ž,(2.26) for 𝑖=1,2. Similarly, we have ξ€œπ‘„|𝑣|𝑛||||ξ‚΅ξ€œΞ”πœ‘π‘‘π‘ƒβ‰€π‘„|𝑣|π‘ξ‚Άπœ‘π‘‘π‘ƒπ‘›/π‘ξ‚΅ξ€œπ‘„πœ‘βˆ’π‘›/(π‘βˆ’π‘›)||||Ξ”πœ‘π‘/(π‘βˆ’π‘›)𝑑𝑃(π‘βˆ’π‘›)/𝑝.(2.27)
If we set ξ€œβ„βˆΆ=𝑄|𝑒|π‘žξ€œπœ‘π‘‘π‘ƒ,π’₯∢=𝑄|𝑣|π‘ξ‚΅ξ€œπœ‘π‘‘π‘ƒ,π’œ(𝑝,𝑛)=π‘„πœ‘βˆ’π‘›/(π‘βˆ’π‘›)||||Ξ”πœ‘π‘/(π‘βˆ’π‘›)𝑑𝑃(π‘βˆ’π‘›)/𝑝,β„¬π‘–ξ‚΅ξ€œ(π‘ž)=π‘„πœ‘βˆ’1/(π‘žβˆ’1)||πœ‘π‘‘π‘–||π‘ž/(π‘žβˆ’1)𝑑𝑃(π‘žβˆ’1)/π‘ž,ℬ(π‘ž)=ℬ1(π‘ž)+ℬ2(π‘ž),(2.28) then, using (2.23), inequalities (2.26) and (2.27) in (2.21), we my write ℐ≀π’₯1/𝑝ℬ(𝑝)+π’₯𝑛/π‘π’œ(𝑝,𝑛),π’₯≀ℐ1/π‘žβ„¬(π‘ž)+β„π‘š/π‘žπ’œ(π‘ž,π‘š),(2.29) so π’₯𝑛/𝑝ℐ≀𝐢𝑛/π‘π‘žβ„¬π‘›/π‘ž(π‘ž)+β„π‘šπ‘›/π‘π‘žπ’œπ‘›/𝑝(π‘ž,π‘š)(2.30) for some positive constant 𝐢.
Whereupon ℐℐ≀𝐢1/π‘π‘žβ„¬1/𝑝(π‘ž)ℬ(𝑝)+β„π‘š/π‘π‘žπ’œ1/𝑝(π‘ž,π‘š)ℬ(𝑝)+ℐ𝑛/π‘π‘žβ„¬π‘›/𝑝(π‘ž)π’œ(𝑝,𝑛)+β„π‘šπ‘›/π‘π‘žπ’œπ‘›/𝑝.(π‘ž,π‘š)π’œ(𝑝,𝑛)ℬ(𝑝)(2.31) Using HΓΆlder's inequality, we may write ℬℐ≀𝐢1/𝑝(π‘ž)ℬ(𝑝)π‘π‘ž/(π‘π‘žβˆ’1)+ξ€·π’œ1/𝑝(π‘ž,π‘š)ℬ(𝑝)π‘π‘ž/(π‘π‘žβˆ’π‘š)+ℬ𝑛/𝑝(π‘ž)π’œ(𝑝,𝑛)π‘π‘ž/(π‘π‘žβˆ’π‘›)+ξ€·π’œπ‘›/𝑝(π‘ž,π‘š)π’œ(𝑝,𝑛)π‘π‘ž/(π‘π‘žβˆ’π‘šπ‘›).(2.32) At this stage, using the scaled variables (2.11), we obtain π’œ(𝑝,𝑛)=πΆπ‘…βˆ’2+(4+𝑑)(1βˆ’π‘›/𝑝),ℬ𝑖(π‘ž)=πΆπ‘…βˆ’2+(4+𝑑)(1βˆ’1/π‘ž),𝑖=1,2.(2.33) Hence, for ℐ, we get the estimate ξ€½π‘…β„β‰€πΆβˆ’πœŽ1(𝑝,π‘ž)+π‘…βˆ’πœŽ2(𝑝,π‘ž)+π‘…βˆ’πœŽ3(𝑝,π‘ž)+π‘…βˆ’πœŽ4(𝑝,π‘ž)ξ€Ύ.(2.34) Observe that, following the same lines, we can also obtain the following estimate for π’₯: 𝑅π’₯β‰€πΆβˆ’πœŽ1(π‘ž,𝑝)+π‘…βˆ’πœŽ2(π‘ž,𝑝)+π‘…βˆ’πœŽ3(π‘ž,𝑝)+π‘…βˆ’πœŽ4(π‘ž,𝑝)ξ€Ύ.(2.35)
To conclude, we have to consider two cases.Case 1. If max{𝜎1(𝑝,π‘ž),…,𝜎4(𝑝,π‘ž),𝜎1(π‘ž,𝑝),…,𝜎4(π‘ž,𝑝)}<0 then lim𝑅→+βˆžξ€œβ„=𝑄|𝑒|π‘žπ‘‘π‘ƒ=0βŸΉπ‘’=0,𝑝.𝑝.lim𝑅→+βˆžξ€œπ’₯=𝑄|𝑣|𝑝𝑑𝑃=0βŸΉπ‘£=0,𝑝.𝑝.(2.36) A contradiction.Case 2. If max{𝜎1(𝑝,π‘ž),…,𝜎4(𝑝,π‘ž),𝜎1(π‘ž,𝑝),…,𝜎4(π‘ž,𝑝)}=0, we conclude following the same argument used for one equation.

Acknowledgments

The authors thank the referees for their remarks. This work is supported by Sultan Qaboos University under Grant: IG/SCI/DOMS/11/06. This work has been done during a visit of the second named author to DOMAS, Sultan Qaboos University, Muscat, Oman, which he thanks for its support and hospitality.