Abstract

The aim of this paper is to offer sufficient conditions for property (B) and/or the oscillation of the third-order nonlinear functional differential equation with mixed arguments [๐‘Ž(๐‘ก)[๐‘ฅ๎…ž๎…ž(๐‘ก)]๐›พ]๎…ž=๐‘ž(๐‘ก)๐‘“(๐‘ฅ[๐œ(๐‘ก)])+๐‘(๐‘ก)โ„Ž(๐‘ฅ[๐œŽ(๐‘ก)]). Both cases โˆซโˆž๐‘Žโˆ’1/๐›พ(๐‘ )d๐‘ =โˆž and โˆซโˆž๐‘Žโˆ’1/๐›พ(๐‘ )d๐‘ <โˆž are considered. We deduce properties of the studied equations via new comparison theorems. The results obtained essentially improve and complement earlier ones.

1. Introduction

We are concerned with the oscillatory and certain asymptotic behavior of all solutions of the third-order functional differential equations๎€บ๐‘Ž๎€บ๐‘ฅ(๐‘ก)๎…ž๎…ž๎€ป(๐‘ก)๐›พ๎€ป๎…ž[๐œ][๐œŽ]=๐‘ž(๐‘ก)๐‘“(๐‘ฅ(๐‘ก))+๐‘(๐‘ก)โ„Ž(๐‘ฅ(๐‘ก)).(๐ธ) Throughout the paper, it is assumed that ๐‘Ž,๐‘ž,๐‘โˆˆ๐ถ([๐‘ก0,โˆž)), ๐œ,๐œŽโˆˆ๐ถ1([๐‘ก0,โˆž)), ๐‘“,โ„Žโˆˆ๐ถ((โˆ’โˆž,โˆž)), and (H1)๐›พ is the ratio of two positive odd integers, (H2)๐‘Ž(๐‘ก), ๐‘ž(๐‘ก), ๐‘(๐‘ก) are positive, (H3)๐œ(๐‘ก)โ‰ค๐‘ก, ๐œŽ(๐‘ก)โ‰ฅ๐‘ก, ๐œโ€ฒ(๐‘ก)>0, ๐œŽโ€ฒ(๐‘ก)>0, lim๐‘กโ†’โˆž๐œ(๐‘ก)=โˆž, (H4)๐‘“1/๐›พ(๐‘ฅ)/๐‘ฅโ‰ฅ1, ๐‘ฅโ„Ž(๐‘ฅ)>0, ๐‘“โ€ฒ(๐‘ฅ)โ‰ฅ0, and โ„Žโ€ฒ(๐‘ฅ)โ‰ฅ0 for ๐‘ฅโ‰ 0, (H5)โˆ’๐‘“(โˆ’๐‘ฅ๐‘ฆ)โ‰ฅ๐‘“(๐‘ฅ๐‘ฆ)โ‰ฅ๐‘“(๐‘ฅ)๐‘“(๐‘ฆ) for ๐‘ฅ๐‘ฆ>0 and โˆ’โ„Ž(โˆ’๐‘ฅ๐‘ฆ)โ‰ฅโ„Ž(๐‘ฅ๐‘ฆ)โ‰ฅโ„Ž(๐‘ฅ)โ„Ž(๐‘ฆ) for ๐‘ฅ๐‘ฆ>0.

By a solution of (๐ธ), we mean a function ๐‘ฅ(๐‘ก)โˆˆ๐ถ2([๐‘‡๐‘ฅ,โˆž)),๐‘‡๐‘ฅโ‰ฅ๐‘ก0, which has the property ๐‘Ž(๐‘ก)(๐‘ฅ๎…ž๎…ž(๐‘ก))๐›พโˆˆ๐ถ1([๐‘‡๐‘ฅ,โˆž)) and satisfies (๐ธ) on [๐‘‡๐‘ฅ,โˆž). We consider only those solutions ๐‘ฅ(๐‘ก) of (๐ธ) which satisfy sup{|๐‘ฅ(๐‘ก)|โˆถ๐‘กโ‰ฅ๐‘‡}>0 for all ๐‘‡โ‰ฅ๐‘‡๐‘ฅ. We assume that (๐ธ) possesses such a solution. A solution of (๐ธ) is called oscillatory if it has arbitrarily large zeros on [๐‘‡๐‘ฅ,โˆž), and, otherwise, it is nonoscillatory. Equation (๐ธ) is said to be oscillatory if all its solutions are oscillatory.

Recently, (๐ธ) and its particular cases (see [1โ€“17]) have been intensively studied. The effort has been oriented to provide sufficient conditions for every (๐ธ) to satisfylim๐‘กโ†’โˆž||||๐‘ฅ(๐‘ก)=โˆž(1.1) or to eliminate all nonoscillatory solutions. Following [6, 8, 13, 15], we say that (๐ธ) has property (B) if each of its nonoscillatory solutions satisfies (1.1).

We will discuss both cases๎€œโˆž๐‘ก0๐‘Žโˆ’1/๐›พ๎€œ(๐‘ )d๐‘ <โˆž,(1.2)โˆž๐‘ก0๐‘Žโˆ’1/๐›พ(๐‘ )d๐‘ =โˆž.(1.3)

We will establish suitable comparison theorems that enable us to study properties of (๐ธ) regardless of the fact that (1.3) or (1.2) holds. We will compare (๐ธ) with the first-order advanced/delay equations, in the sense that the oscillation of these first-order equations yields property (B) or the oscillation of (๐ธ).

In the paper, we are motivated by an interesting result of Grace et al. [10], where the oscillation criteria for (๐ธ) are discussed. This result has been complemented by Baculรญkovรก et al. [5]. When studying properties of (๐ธ), the authors usually reduce (๐ธ) onto the corresponding differential inequalities ๎€บ๐‘Ž๎€บ๐‘ฅ(๐‘ก)๎…ž๎…ž๎€ป(๐‘ก)๐›พ๎€ป๎…ž[๐œ]๎€บ๎€บ๐‘ฅโ‰ฅ๐‘ž(๐‘ก)๐‘“(๐‘ฅ(๐‘ก)),๐‘Ž(๐‘ก)๎…ž๎…ž(๎€ป๐‘ก)๐›พ๎€ป๎…ž[]),โ‰ฅ๐‘(๐‘ก)โ„Ž(๐‘ฅ๐œŽ(๐‘ก)(๐ธ๐œŽ) and further study only properties of these inequalities. Therefore, the criteria obtained withhold information either from delay argument ๐œ(๐‘ก) and the corresponding functions ๐‘ž(๐‘ก) and ๐‘“(๐‘ข) or from advanced argument ๐œŽ(๐‘ก) and the corresponding functions ๐‘(๐‘ก) and โ„Ž(๐‘ข). In the paper, we offer a technique for obtaining new criteria for property (B) and the oscillation of (๐ธ) that involve both arguments ๐œ(๐‘ก) and ๐œŽ(๐‘ก). Consequently, our results are new even for the linear case of (๐ธ) and properly complement and extend earlier ones presented in [1โ€“17].

Remark 1.1. All functional inequalities considered in this paper are assumed to hold eventually; that is, they are satisfied for all ๐‘ก large enough.

2. Main Results

The following results are elementary but useful in what comes next.

Lemma 2.1. Assume that ๐ดโ‰ฅ0, ๐ตโ‰ฅ0, ๐›ผโ‰ฅ1. Then, (๐ด+๐ต)๐›ผโ‰ฅ๐ด๐›ผ+๐ต๐›ผ.(2.1)

Proof. If ๐ด=0 or ๐ต=0, then (2.1) holds. For ๐ดโ‰ 0, setting ๐‘ฅ=๐ต/๐ด, condition (2.1) takes the form (1+๐‘ฅ)๐›ผโ‰ฅ1+๐‘ฅ๐›ผ, which is for ๐‘ฅ>0 evidently true.

Lemma 2.2. Assume that ๐ดโ‰ฅ0, ๐ตโ‰ฅ0, 0<๐›ผโ‰ค1. Then, (๐ด+๐ต)๐›ผโ‰ฅ๐ด๐›ผ+๐ต๐›ผ21โˆ’๐›ผ.(2.2)

Proof. We may assume that 0<๐ด<๐ต. Consider a function ๐‘”(๐‘ข)=๐‘ข๐›ผ. Since ๐‘”๎…ž๎…ž(๐‘ข)<0 for ๐‘ข>0, function ๐‘”(๐‘ข) is concave down; that is, ๐‘”๎‚€๐ด+๐ต2๎‚โ‰ฅ๐‘”(๐ด)+๐‘”(๐ต)2(2.3) which implies (2.2).

The following result presents a useful relationship between an existence of positive solutions of the advanced differential inequality and the corresponding advanced differential equation.

Lemma 2.3. Suppose that ๐‘(๐‘ก), ๐œŽ(๐‘ก), and โ„Ž(๐‘ข) satisfy (H2), (H3), and (H4), respectively. If the first-order advanced differential inequality ๐‘ง๎…ž(๐‘ก)โˆ’๐‘(๐‘ก)โ„Ž(๐‘ง(๐œŽ(๐‘ก)))โ‰ฅ0(2.4) has an eventually positive solution, so does the advanced differential equation ๐‘ง๎…ž(๐‘ก)โˆ’๐‘(๐‘ก)โ„Ž(๐‘ง(๐œŽ(๐‘ก)))=0.(2.5)

Proof. Let ๐‘ง(๐‘ก) be a positive solution of (2.4) on [๐‘ก1,โˆž). Then, ๐‘ง(๐‘ก) satisfies the inequality ๎€ท๐‘ก๐‘ง(๐‘ก)โ‰ฅ๐‘ง1๎€ธ+๎€œ๐‘ก๐‘ก1๐‘(๐‘ )โ„Ž(๐‘ง(๐œŽ(๐‘ )))d๐‘ .(2.6) Let ๐‘ฆ1๐‘ฆ(๐‘ก)=๐‘ง(๐‘ก),๐‘›(๎€ท๐‘ก๐‘ก)=๐‘ง1๎€ธ+๎€œ๐‘ก๐‘ก1๎€ท๐‘ฆ๐‘(๐‘ )โ„Ž๐‘›โˆ’1(๎€ธ๐œŽ(๐‘ ))d๐‘ ,๐‘›=2,3โ€ฆ.(2.7) It follows from the definition of ๐‘ฆ๐‘›(๐‘ก) and (๐ป4) that the sequence {๐‘ฆ๐‘›} has the property ๐‘ง(๐‘ก)=๐‘ฆ1(๐‘ก)โ‰ฅ๐‘ฆ2๎€ท๐‘ก(๐‘ก)โ‰ฅโ‹ฏโ‰ฅ๐‘ง1๎€ธ,๐‘กโ‰ฅ๐‘ก1.(2.8) Hence, {๐‘ฆ๐‘›} converges pointwise to a function ๐‘ฆ(๐‘ก), where ๐‘ง(๐‘ก)โ‰ฅ๐‘ฆ(๐‘ก)โ‰ฅ๐‘ง(๐‘ก1). Let โ„Ž๐‘›(๐‘ก)=๐‘(๐‘ก)โ„Ž(๐‘ฆ๐‘›(๐œŽ(๐‘ก))), ๐‘›=1,2,โ€ฆ, then โ„Ž1(๐‘ก)โ‰ฅโ„Ž2(๐‘ก)โ‰ฅโ‹ฏโ‰ฅ0. Since โ„Ž1(๐‘ก) is integrable on [๐‘ก1,๐‘ก] and lim๐‘›โ†’โˆžโ„Ž๐‘›(๐‘ก)=๐‘(๐‘ก)โ„Ž(๐‘ฆ(๐œŽ(๐‘ก))), it follows by Lebesgue's dominated convergence theorem that ๎€ท๐‘ก๐‘ฆ(๐‘ก)=๐‘ง1๎€ธ+๎€œ๐‘ก๐‘ก1๐‘(๐‘ )โ„Ž(๐‘ฆ(๐œŽ(๐‘ )))d๐‘ .(2.9) Thus, ๐‘ฆ(๐‘ก) satisfies (2.5).

We start our main results with the classification of the possible nonoscillatory solutions of (๐ธ).

Lemma 2.4. Let ๐‘ฅ(๐‘ก) be a nonoscillatory solution of (๐ธ). Then, ๐‘ฅ(๐‘ก) satisfies, eventually, one of the following conditions (I)๐‘ฅ(๐‘ก)๐‘ฅ๎…ž(๐‘ก)>0,๐‘ฅ(๐‘ก)๐‘ฅ๎…ž๎…ž๎€บ๐‘Ž๎€บ๐‘ฅ(๐‘ก)>0,๐‘ฅ(๐‘ก)(๐‘ก)๎…ž๎…ž๎€ป(๐‘ก)๐›พ๎€ป๎…ž>0,(2.10)(II)๐‘ฅ(๐‘ก)๐‘ฅ๎…ž(๐‘ก)>0,๐‘ฅ(๐‘ก)๐‘ฅ๎…ž๎…ž๎€บ๐‘Ž๎€บ๐‘ฅ(๐‘ก)<0,๐‘ฅ(๐‘ก)(๐‘ก)๎…ž๎…ž๎€ป(๐‘ก)๐›พ๎€ป๎…ž>0,(2.11)and if (1.2) holds, then also (III)๐‘ฅ(๐‘ก)๐‘ฅ๎…ž(๐‘ก)<0,๐‘ฅ(๐‘ก)๐‘ฅ๎…ž๎…ž๎€บ๐‘Ž๎€บ๐‘ฅ(๐‘ก)>0,๐‘ฅ(๐‘ก)(๐‘ก)๎…ž๎…ž๎€ป(๐‘ก)๐›พ๎€ป๎…ž>0.(2.12)

Proof. Let ๐‘ฅ(๐‘ก) be a nonoscillatory solution of (๐ธ), say ๐‘ฅ(๐‘ก)>0 for ๐‘กโ‰ฅ๐‘ก0. It follows from (๐ธ) that [๐‘Ž(๐‘ก)[๐‘ฅ๎…ž๎…ž(๐‘ก)]๐›พ]>0, eventually. Thus, ๐‘ฅ๎…ž๎…ž(๐‘ก) and ๐‘ฅโ€ฒ(๐‘ก) are of fixed sign for ๐‘กโ‰ฅ๐‘ก1, ๐‘ก1 large enough. At first, we assume that ๐‘ฅ๎…ž๎…ž(๐‘ก)<0. Then, either ๐‘ฅ๎…ž(๐‘ก)>0 or ๐‘ฅ๎…ž(๐‘ก)<0, eventually. But ๐‘ฅ๎…ž๎…ž(๐‘ก)<0 together with ๐‘ฅโ€ฒ(๐‘ก)<0 imply that ๐‘ฅ(๐‘ก)<0. A contradiction, that is, Case (II) holds.
Now, we suppose that ๐‘ฅ๎…ž๎…ž(๐‘ก)>0, then either Case (I) or Case (III) holds. On the other hand, if (1.3) holds, then Case (III) implies that ๐‘Ž(๐‘ก)[๐‘ฅ๎…ž๎…ž(๐‘ก)]๐›พโ‰ฅ๐‘>0, ๐‘กโ‰ฅ๐‘ก1. Integrating from ๐‘ก1 to ๐‘ก, we have ๐‘ฅ๎…ž(๐‘ก)โˆ’๐‘ฅ๎…ž๎€ท๐‘ก1๎€ธโ‰ฅ๐‘1/๐›พ๎€œ๐‘ก๐‘ก1๐‘Žโˆ’1/๐›พ(๐‘ )d๐‘ ,(2.13) which implies that ๐‘ฅโ€ฒ(๐‘ก)โ†’โˆž as ๐‘กโ†’โˆž, and we deduce that Case (III) may occur only if (1.2) is satisfied. The proof is complete.

Remark 2.5. It follows from Lemma 2.4 that if (1.3) holds, then only Cases (I) and (II) may occur.

In the following results, we provide criteria for the elimination of Cases (I)โ€“(III) of Lemma 2.4 to obtain property (B)/oscillation of (๐ธ).

Let us denote for our further references that๎€œ๐‘ƒ(๐‘ก)=โˆž๐‘ก๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ข)โˆž๐‘ข๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พ๎€œd๐‘ข,(2.14)๐‘„(๐‘ก)=โˆž๐‘ก๐‘Žโˆ’1/๐›พ๎ƒฉ๎€œ(๐‘ข)โˆž๐‘ข๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1๎€ธ๎ƒช(๐‘ )d๐‘ 1/๐›พd๐‘ข.(2.15)

Theorem 2.6. Let 0<๐›พโ‰ค1. Assume that ๐‘ฅ(๐‘ก) is a nonoscillatory solution of (๐ธ). If the first-order advanced differential equation ๐‘ง๎…ž(๐‘ก)โˆ’๐‘ƒ(๐‘ก)eโˆ’โˆซ๐‘ก๐‘ก1๐‘„(๐‘ )๐‘‘๐‘ โ„Ž1/๐›พ๎‚€eโˆซ๐‘ก1๐œŽ(๐‘ก)๐‘„(๐‘ )๐‘‘๐‘ ๎‚โ„Ž1/๐›พ[](๐‘ง๐œŽ(๐‘ก))=0(๐ธ1) is oscillatory, then Case (II) cannot hold.

Proof. Let ๐‘ฅ(๐‘ก) be a nonoscillatory solution of (๐ธ), satisfying Case (II) of Lemma 2.4. We may assume that ๐‘ฅ(๐‘ก)>0 for ๐‘กโ‰ฅ๐‘ก0. Integrating (๐ธ) from ๐‘ก to โˆž, one gets ๎€บ๐‘ฅโˆ’๐‘Ž(๐‘ก)๎…ž๎…ž(๎€ป๐‘ก)๐›พโ‰ฅ๎€œโˆž๐‘ก[]๎€œ๐‘ž(๐‘ )๐‘“(๐‘ฅ๐œ(๐‘ ))d๐‘ +โˆž๐‘ก[]๐‘(๐‘ )โ„Ž(๐‘ฅ๐œŽ(๐‘ ))d๐‘ .(2.16) On the other hand, the substitution ๐œ(๐‘ )=๐‘ข gives ๎€œโˆž๐‘ก๐‘ž[๐œ]๎€œ(๐‘ )๐‘“(๐‘ฅ(๐‘ ))d๐‘ =โˆž๐œ(๐‘ก)๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ข)๐œ๎…ž๎€ท๐œโˆ’1๎€ธ๐‘“โ‰ฅ๎€œ(๐‘ข)(๐‘ฅ(๐‘ข))d๐‘ขโˆž๐‘ก๐‘ž๎€ท๐œโˆ’1(๎€ธ๐‘ )๐œ๎…ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐‘“(๐‘ฅ(๐‘ ))d๐‘ .(2.17) Using (2.17) in (2.16), we find โˆ’๐‘ฅ๎…ž๎…ž(๐‘ก)โ‰ฅ๐‘Žโˆ’1/๐›พ๎ƒฉ๎€œ(๐‘ก)โˆž๐‘ก๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1(๎€ธ๎€œ๐‘ )๐‘“(๐‘ฅ(๐‘ ))d๐‘ +โˆž๐‘ก[]๎ƒช๐‘(๐‘ )โ„Ž(๐‘ฅ๐œŽ(๐‘ ))d๐‘ 1/๐›พ.(2.18) Taking into account the monotonicity of ๐‘ฅ(๐‘ก), it follows from Lemma 2.1 that โˆ’๐‘ฅ๎…ž๎…ž๐‘“(๐‘ก)โ‰ฅ1/๐›พ(๐‘ฅ(๐‘ก))๐‘Ž1/๐›พ(๎ƒฉ๎€œ๐‘ก)โˆž๐‘ก๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1(๎€ธ๎ƒช๐‘ )d๐‘ 1/๐›พ+โ„Ž1/๐›พ[๐œŽ])(๐‘ฅ(๐‘ก)๐‘Ž1/๐›พ๎‚ต๎€œ(๐‘ก)โˆž๐‘ก๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พ,(2.19) where we have used (๐ป3) and (๐ป4). An integration from ๐‘ก to โˆž yields ๐‘ฅ๎…ž๎€œ(๐‘ก)โ‰ฅโˆž๐‘ก๐‘“1/๐›พ(๐‘ฅ(๐‘ข))๐‘Ž1/๐›พ(๎ƒฉ๎€œ๐‘ข)โˆž๐‘ข๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1(๎€ธ๎ƒช๐‘ )d๐‘ 1/๐›พ+๎€œd๐‘ขโˆž๐‘กโ„Ž1/๐›พ[๐œŽ])(๐‘ฅ(๐‘ข)๐‘Ž1/๐›พ๎‚ต๎€œ(๐‘ข)โˆž๐‘ข๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พd๐‘ขโ‰ฅ๐‘“1/๐›พ(๐‘ฅ(๐‘ก))๐‘„(๐‘ก)+โ„Ž1/๐›พ(๐‘ฅ[])๐œŽ(๐‘ก)๐‘ƒ(๐‘ก).(2.20) Regarding (๐ป4), it follows that ๐‘ฅ(๐‘ก) is a positive solution of the differential inequality ๐‘ฅ๎…ž(๐‘ก)โˆ’๐‘„(๐‘ก)๐‘ฅ(๐‘ก)โ‰ฅ๐‘ƒ(๐‘ก)โ„Ž1/๐›พ[](๐‘ฅ๐œŽ(๐‘ก)).(2.21) Applying the transformation ๐‘ฅ(๐‘ก)=๐‘ค(๐‘ก)๐‘’โˆซ๐‘ก๐‘ก1๐‘„(๐‘ )d๐‘ ,(2.22) we can easily verify that ๐‘ค(๐‘ก) is a positive solution of the advanced differential inequality ๐‘ค๎…ž(๐‘ก)โˆ’๐‘ƒ(๐‘ก)๐‘’โˆ’โˆซ๐‘ก๐‘ก1๐‘„(๐‘ )d๐‘ โ„Ž1/๐›พ๎‚€๐‘’โˆซ๐‘ก1๐œŽ(๐‘ก)๐‘„(๐‘ )d๐‘ ๎‚โ„Ž1/๐›พ[](๐‘ค๐œŽ(๐‘ก))โ‰ฅ0.(2.23) By Lemma 2.3, we conclude that the corresponding differential equation (๐ธ1) has also a positive solution. A contradiction. Therefore, ๐‘ฅ(๐‘ก) cannot satisfy Case (II).

Remark 2.7. It follows from the proof of Theorem 2.8 that if at least one of the following conditions is satisfied: ๎€œโˆž๐‘ก0๎€œ๐‘(๐‘ )d๐‘ =โˆž,โˆž๐‘ก0๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1๎€ธ๎€œ(๐‘ )d๐‘ =โˆž,โˆž๐‘ก0๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ข)โˆž๐‘ข๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พ๎€œd๐‘ข=โˆž,โˆž๐‘ก0๐‘Žโˆ’1/๐›พ๎ƒฉ๎€œ(๐‘ข)โˆž๐‘ข๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1๎€ธ๎ƒช(๐‘ )d๐‘ 1/๐›พd๐‘ข=โˆž,(2.24) then any nonoscillatory solution ๐‘ฅ(๐‘ก) of (๐ธ) cannot satisfy Case (II). Therefore, we may assume that the corresponding integrals in (2.14)-(2.15) are convergent.

Now, we are prepared to provide new criteria for property (B) of (๐ธ) and also the rate of divergence of all nonoscillatory solutions.

Theorem 2.8. Let (1.3) hold and 0<๐›พโ‰ค1. Assume that (๐ธ1) is oscillatory. Then, (๐ธ) has property (B) and, what is more, the following rate of divergence for each of its nonoscillatory solutions holds: ||||๎€œ๐‘ฅ(๐‘ก)โ‰ฅ๐‘๐‘ก๐‘ก1๐‘Žโˆ’1/๐›พ(๐‘ )(๐‘กโˆ’๐‘ )๐‘‘๐‘ ,๐‘>0.(2.25)

Proof. Let ๐‘ฅ(๐‘ก) be a positive solution of (๐ธ). It follows from Lemma 2.4 and Remark 2.5 that ๐‘ฅ(๐‘ก) satisfies either Case (I) or (II). But Theorem 2.6 implies that the Case (II) cannot hold. Therefore, ๐‘ฅ(๐‘ก) satisfies Case (I), which implies (1.1); that is, (๐ธ) has property (B). On the other hand, there is a constant ๐‘>0 such that ๎€ท๐‘ฅ๐‘Ž(๐‘ก)๎…ž๎…ž๎€ธ(๐‘ก)๐›พโ‰ฅ๐‘๐›พ.(2.26) Integrating twice from ๐‘ก1 to ๐‘ก, we have ๎€œ๐‘ฅ(๐‘ก)โ‰ฅ๐‘๐‘ก๐‘ก1๎‚ต๎€œ๐‘ข๐‘ก1๐‘Žโˆ’1/๐›พ(๎‚ถ๎€œ๐‘ )d๐‘ d๐‘ข=๐‘๐‘ก๐‘ก1๐‘Žโˆ’1/๐›พ(๐‘ )(๐‘กโˆ’๐‘ )d๐‘ ,(2.27) which is the desired estimate.

Employing an additional condition on the function โ„Ž(๐‘ฅ), we get easily verifiable criterion for property (B) of (๐ธ).

Corollary 2.9. Let 0<๐›พโ‰ค1 and (1.3) hold. Assume that โ„Ž1/๐›พ(๐‘ฅ)/๐‘ฅโ‰ฅ1,|๐‘ฅ|โ‰ฅ1,(2.28)liminf๐‘กโ†’โˆž๎€œ๐‘ก๐œŽ(๐‘ก)๐‘ƒ(๐‘ข)eโˆซ๐‘ข๐œŽ(๐‘ข)๐‘„(๐‘ )๐‘‘๐‘ 1๐‘‘๐‘ข>e.(2.29) Then, (๐ธ) has property (B).

Proof. First note that (2.29) implies ๎€œโˆž๐‘ก0๐‘ƒ(๐‘ข)๐‘’โˆซ๐‘ข๐œŽ(๐‘ข)๐‘„(๐‘ )d๐‘ d๐‘ข=โˆž.(2.30) By Theorem 2.8, it is sufficient to show that (๐ธ1) is oscillatory. Assume the converse, let (๐ธ1) have an eventually positive solution ๐‘ง(๐‘ก). Then, ๐‘งโ€ฒ(๐‘ก)>0 and so ๐‘ง(๐œŽ(๐‘ก))>๐‘>0. Integrating (๐ธ1) from ๐‘ก1 to ๐‘ก, we have in view of (2.28) ๎€œ๐‘ง(๐‘ก)โ‰ฅ๐‘ก๐‘ก1๐‘ƒ(๐‘ข)๐‘’โˆ’โˆซ๐‘ข๐‘ก1๐‘„(๐‘ )d๐‘ โ„Ž1/๐›พ๎‚€๐‘’โˆซ๐‘ก1๐œŽ(๐‘ข)๐‘„(๐‘ )d๐‘ ๎‚โ„Ž1/๐›พ(๐‘ง[])๐œŽ(๐‘ข)d๐‘ขโ‰ฅโ„Ž1/๐›พ๎€œ(๐‘)๐‘ก๐‘ก1๐‘ƒ(๐‘ข)๐‘’โˆซ๐‘ข๐œŽ(๐‘ข)๐‘„(๐‘ )d๐‘ d๐‘ข.(2.31) Using (2.30) in the previous inequalities, we get ๐‘ง(๐‘ก)โ†’โˆž as ๐‘กโ†’โˆž. Therefore, ๐‘ง(๐‘ก)โ‰ฅ1, eventually. Now, using (2.28) in (๐ธ1), one can verify that ๐‘ง(๐‘ก) is a positive solution of the differential inequality ๐‘ง๎…ž(๐‘ก)โˆ’๐‘ƒ(๐‘ก)๐‘’โˆซ๐‘ก๐œŽ(๐‘ก)๐‘„(๐‘ )d๐‘ ๐‘ง(๐œŽ(๐‘ก))โ‰ฅ0.(2.32) But, by [14, Theoremโ€‰โ€‰2.4.1], condition (2.29) ensures that (2.32) has no positive solutions. This is a contradiction, and we conclude that (๐ธ) has property (B).

Example 2.10. Consider the third-order nonlinear differential equation with mixed arguments ๎‚€๐‘ก1/3๎€ท๐‘ฅ๎…ž๎…ž๎€ธ(๐‘ก)1/3๎‚๎…ž=๐‘Ž๐‘ก4/3๐‘ฅ1/3๐‘(๐œ†๐‘ก)+๐‘ก4/3๐‘ฅ๐›ฝ(๐œ”๐‘ก),(๐ธ๐‘ฅ1) where ๐‘Ž,๐‘>0,0<๐œ†<1, ๐œ”>1, and ๐›ฝโ‰ฅ1/3 is a ratio of two positive odd integers. Since ๐‘ƒ(๐‘ก)=27๐‘3๐‘ก,๐‘„(๐‘ก)=27๐‘Ž3๐œ†๐‘ก,(2.33) Corollary 2.9 implies that (๐ธ๐‘ฅ1) has property (B) provided that ๐‘3๐œ”27๐‘Ž3๐œ†1ln๐œ”>.27e(2.34) Moreover, by Theorem 2.8, the rate of divergence of every nonoscillatory solution of (๐ธ๐‘ฅ1) is ||||๐‘ฅ(๐‘ก)โ‰ฅ๐‘๐‘กln๐‘ก,๐‘>0.(2.35) For ๐›ฝ=1/3 and ๐›ฟ>1 satisfying ๐›ฟ1/3(๐›ฟโˆ’1)4/3=3๐‘Ž๐œ†๐›ฟ/3+3๐‘๐œ”๐›ฟ/3, one such solution is ๐‘ก๐›ฟ.

Now, we turn our attention to the case when ๐›พโ‰ฅ1.

Theorem 2.11. Let ๐›พโ‰ฅ1. Assume that ๐‘ฅ(๐‘ก) is a nonoscillatory solution of (๐ธ). If the first-order advanced differential equation ๐‘ง๎…ž(๐‘ก)โˆ’2(1โˆ’๐›พ)/๐›พ๐‘ƒ(๐‘ก)๐‘’[โˆ’2(1โˆ’๐›พ)/๐›พโˆซ๐‘ก๐‘ก1๐‘„(๐‘ )๐‘‘๐‘ ]โ„Ž1/๐›พ๎‚€e2(1โˆ’๐›พ)/๐›พโˆซ๐‘ก1๐œŽ(๐‘ก)๐‘„(๐‘ )๐‘‘๐‘ ๎‚โ„Ž1/๐›พ[](๐‘ง๐œŽ(๐‘ก))=0(๐ธ2) is oscillatory, then Case (II) cannot hold.

Proof. Let ๐‘ฅ(๐‘ก) be an eventually positive solution of (๐ธ), satisfying Case (II) of Lemma 2.4. Then, (2.18) holds. Lemma 2.2, in view of the monotonicity of ๐‘ฅ(๐‘ก), (๐ป3), and (๐ป4), implies โˆ’๐‘ฅ๎…ž๎…ž๐‘“(๐‘ก)โ‰ฅ1/๐›พ(๐‘ฅ(๐‘ก))2(๐›พโˆ’1)/๐›พ๐‘Ž1/๐›พ๎ƒฉ๎€œ(๐‘ก)โˆž๐‘ก๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1(๎€ธ๎ƒช๐‘ )d๐‘ 1/๐›พ+โ„Ž1/๐›พ[๐œŽ])(๐‘ฅ(๐‘ก)2(๐›พโˆ’1)/๐›พ๐‘Ž1/๐›พ๎‚ต๎€œ(๐‘ก)โˆž๐‘ก๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พ.(2.36) An integration from ๐‘ก to โˆž yields ๐‘ฅ๎…ž๎€œ(๐‘ก)โ‰ฅโˆž๐‘ก๐‘“1/๐›พ(๐‘ฅ(๐‘ข))2(๐›พโˆ’1)/๐›พ๐‘Ž1/๐›พ๎ƒฉ๎€œ(๐‘ข)โˆž๐‘ข๐‘ž๎€ท๐œโˆ’1๎€ธ(๐‘ )๐œ๎…ž๎€ท๐œโˆ’1(๎€ธ๎ƒช๐‘ )d๐‘ 1/๐›พ+๎€œd๐‘ขโˆž๐‘กโ„Ž1/๐›พ[๐œŽ])(๐‘ฅ(๐‘ข)2(๐›พโˆ’1)/๐›พ๐‘Ž1/๐›พ๎‚ต๎€œ(๐‘ข)โˆž๐‘ข๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พd๐‘ขโ‰ฅ๐‘“1/๐›พ(๐‘ฅ(๐‘ก))2(1โˆ’๐›พ)/๐›พ๐‘„(๐‘ก)+โ„Ž1/๐›พ[](๐‘ฅ๐œŽ(๐‘ก))2(1โˆ’๐›พ)/๐›พ๐‘ƒ(๐‘ก).(2.37) Noting (๐ป4), we see that ๐‘ฅ(๐‘ก) is a positive solution of the differential inequality ๐‘ฅ๎…ž(๐‘ก)โ‰ฅ2(1โˆ’๐›พ)/๐›พ๐‘„(๐‘ก)๐‘ฅ(๐‘ก)+2(1โˆ’๐›พ)/๐›พ๐‘ƒ(๐‘ก)โ„Ž1/๐›พ[](๐‘ฅ๐œŽ(๐‘ก)).(2.38) Setting ๐‘ฅ(๐‘ก)=๐‘ค(๐‘ก)๐‘’[2(1โˆ’๐›พ)/๐›พโˆซ๐‘ก๐‘ก1๐‘„(๐‘ )d๐‘ ],(2.39) one can see that ๐‘ค(๐‘ก) is a positive solution of the advanced differential inequality ๐‘ค๎…ž(๐‘ก)โˆ’2(1โˆ’๐›พ)/๐›พ๐‘ƒ(๐‘ก)๐‘’[โˆ’2(1โˆ’๐›พ)/๐›พโˆซ๐‘ก๐‘ก1๐‘„(๐‘ )d๐‘ ]โ„Ž1/๐›พ๎‚€๐‘’2(1โˆ’๐›พ)/๐›พโˆซ๐‘ก1๐œŽ(๐‘ก)๐‘„(๐‘ )d๐‘ ๎‚โ„Ž1/๐›พ[](๐‘ค๐œŽ(๐‘ก))โ‰ฅ0.(2.40) By Lemma 2.3, we deduce that the corresponding differential equation (๐ธ2) has also a positive solution. A contradiction. Therefore, ๐‘ฅ(๐‘ก) cannot satisfy Case (II).

The following result is obvious.

Theorem 2.12. Let (1.3) hold and ๐›พโ‰ฅ1. Assume that (๐ธ2) is oscillatory. Then, (๐ธ) has property (B) and, what is more, each of its nonoscillatory solutions satisfies (2.25).

Now, we present easily verifiable criterion for property (B) of (๐ธ).

Corollary 2.13. Let (1.3) and (2.28) hold and ๐›พโ‰ฅ1. If liminf๐‘กโ†’โˆž๎€œ๐‘ก๐œŽ(๐‘ก)๐‘ƒ(๐‘ข)e[2(1โˆ’๐›พ)/๐›พโˆซ๐‘ข๐œŽ(๐‘ข)๐‘„(๐‘ )๐‘‘๐‘ ]2๐‘‘๐‘ข>(๐›พโˆ’1)/๐›พe,(2.41) then (๐ธ) has property (B).

Proof. The proof is similar to the proof of Corollary 2.9 and so it can be omitted.

Remark 2.14. Theorems 2.6, 2.8, 2.11, and 2.12 and Corollaries 2.9 and 2.13 provide criteria for property (B) that include both delay and advanced arguments and all coefficients and functions of (๐ธ). Our results are new even for the linear case of (๐ธ).

Remark 2.15. It is useful to notice that if we apply the traditional approach to (๐ธ), that is, if we replace (๐ธ) by the corresponding differential inequality (๐ธ๐œŽ), then conditions (2.29) of Corollary 2.9 and (2.41) of Corollary 2.13 would take the forms liminf๐‘กโ†’โˆž๎€œ๐‘ก๐œŽ(๐‘ก)1๐‘ƒ(๐‘ข)d๐‘ข>๐‘’,liminf๐‘กโ†’โˆž๎€œ๐‘ก๐œŽ(๐‘ก)2๐‘ƒ(๐‘ข)d๐‘ข>(๐›พโˆ’1)/๐›พ๐‘’,(2.42) respectively, which are evidently second to (2.29) and (2.41).

Example 2.16. Consider the third-order nonlinear differential equation with mixed arguments ๎‚€๐‘ก๎€ท๐‘ฅ๎…ž๎…ž๎€ธ(๐‘ก)3๎‚๎…ž=๐‘Ž๐‘ก6๐‘ฅ3๐‘(๐œ†๐‘ก)+๐‘ก6๐‘ฅ๐›ฝ(๐œ”๐‘ก),(๐ธ๐‘ฅ2) where ๐‘Ž,๐‘>0,0<๐œ†<1, ๐›ฝโ‰ฅ3 is a ratio of two positive odd integers and ๐œ”>1. It is easy to see that conditions (2.14) and (2.15) for (๐ธ๐‘ฅ2) reduce to ๐‘๐‘ƒ(๐‘ก)=1/351/3๐‘ก๐œ†,๐‘„(๐‘ก)=5/3๐‘Ž1/351/3๐‘ก,(2.43) respectively. It follows from Corollary 2.13 that (๐ธ๐‘ฅ2) has property (B) provided that ๐‘1/3๎‚ƒ๐œ”๐œ†5/3๐‘Ž1/3/22/351/3๎‚„2ln๐œ”โ‰ฅ2/351/3๐‘’.(2.44) Moreover, (2.25) provides the following rate of divergence for every nonoscillatory solution of (๐ธ๐‘ฅ2): ||||๐‘ฅ(๐‘ก)โ‰ฅ๐‘๐‘ก5/3,๐‘>0.(2.45)

Now, we eliminate Case (I) of Lemma 2.4, to get the oscillation of (๐ธ).

Theorem 2.17. Let ๐‘ฅ(๐‘ก) be a nonoscillatory solution of (๐ธ). Assume that there exists a function ๐œ‰(๐‘ก)โˆˆ๐ถ1([๐‘ก0,โˆž)) such that ๐œ‰๎…ž(๐‘ก)โ‰ฅ0,๐œ‰(๐‘ก)<๐‘ก,๐œ‚(๐‘ก)=๐œŽ(๐œ‰(๐œ‰(๐‘ก)))>๐‘ก.(2.46) If the first-order advanced differential equation ๐‘ง๎…ž๎ƒฏ๎€œ(๐‘ก)โˆ’๐‘ก๐œ‰(๐‘ก)๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ข)๐‘ข๐œ‰(๐‘ข)๎‚ถ๐‘(๐‘ )๐‘‘๐‘ 1/๐›พ๎ƒฐโ„Ž๐‘‘๐‘ข1/๐›พ[](๐‘ง๐œ‚(๐‘ก))=0(๐ธ3) is oscillatory, then Case (I) cannot hold.

Proof. Let ๐‘ฅ(๐‘ก) be an eventually positive solution of (๐ธ), satisfying Case (I). It follows from (๐ธ) that ๎€บ๐‘Ž๎€บ๐‘ฅ(๐‘ก)๎…ž๎…ž๎€ป(๐‘ก)๐›พ๎€ป๎…žโ‰ฅ๐‘[๐œŽ](๐‘ก)โ„Ž(๐‘ฅ(๐‘ก)).(2.47) Integrating from ๐œ‰(๐‘ก) to ๐‘ก, we have ๎€บ๐‘ฅ๐‘Ž(๐‘ก)๎…ž๎…ž๎€ป(๐‘ก)๐›พ๎€บ๐‘ฅโˆ’๐‘Ž(๐œ‰(๐‘ก))๎…ž๎…ž๎€ป(๐œ‰(๐‘ก))๐›พโ‰ฅ๎€œ๐‘ก๐œ‰(๐‘ก)[])[])๎€œ๐‘(๐‘ )โ„Ž(๐‘ฅ๐œŽ(๐‘ )d๐‘ โ‰ฅโ„Ž(๐‘ฅ๐œŽ(๐œ‰(๐‘ก))๐‘ก๐œ‰(๐‘ก)๐‘(๐‘ )d๐‘ .(2.48) Therefore, ๐‘ฅ๎…ž๎…ž(๐‘ก)โ‰ฅโ„Ž1/๐›พ[๐œŽ](๐‘ฅ(๐œ‰(๐‘ก)))๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ก)๐‘ก๐œ‰(๐‘ก)๐‘๎‚ถ(๐‘ )d๐‘ 1/๐›พ.(2.49) An integration from ๐œ‰(๐‘ก) to ๐‘ก yields ๐‘ฅ๎…ž๎€œ(๐‘ก)โ‰ฅ๐‘ก๐œ‰(๐‘ก)โ„Ž1/๐›พ[](๐‘ฅ๐œŽ(๐œ‰(๐‘ข)))๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ข)๐‘ข๐œ‰(๐‘ข)๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พd๐‘ขโ‰ฅโ„Ž1/๐›พ[])๎€œ(๐‘ฅ๐œ‚(๐‘ก)๐‘ก๐œ‰(๐‘ก)๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ข)๐‘ข๐œ‰(๐‘ข)๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พd๐‘ข.(2.50) Consequently, ๐‘ฅ(๐‘ก) is a positive solution of the advanced differential inequality ๐‘ฅ๎…ž๎ƒฏ๎€œ(๐‘ก)โˆ’๐‘ก๐œ‰(๐‘ก)๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ข)๐‘ข๐œ‰(๐‘ข)๎‚ถ๐‘(๐‘ )d๐‘ 1/๐›พ๎ƒฐโ„Žd๐‘ข1/๐›พ[](๐‘ฅ๐œ‚(๐‘ก))โ‰ฅ0.(2.51) Hence, by Lemma 2.3, we conclude that the corresponding differential equation (๐ธ3) also has a positive solution, which contradicts the oscillation of (๐ธ3). Therefore, ๐‘ฅ(๐‘ก) cannot satisfy Case (I).

Combining Theorem 2.17 with Theorems 2.6 and 2.11, we get two criteria for the oscillation of (๐ธ).

Theorem 2.18. Let (1.3) hold and 0<๐›พโ‰ค1. Assume that both of the first-order advanced equations (๐ธ1) and (๐ธ3) are oscillatory, then (๐ธ) is oscillatory.

Proof. Assume that (๐ธ) has a nonoscillatory solution. It follows from Remark 2.5 that ๐‘ฅ(๐‘ก) satisfies either Case (I) or (II). But both cases are excluded by the oscillation of (๐ธ1) and (๐ธ3).

Corollary 2.19. Let 0<๐›พโ‰ค1. Assume that (1.3), (2.28), (2.29), and (2.46) hold. If liminf๐‘กโ†’โˆž๎€œ๐‘ก๐œ‚(๐‘ก)๎ƒฏ๎€œ๐‘ฃ๐œ‰(๐‘ฃ)๐‘Žโˆ’1/๐›พ๎‚ต๎€œ(๐‘ข)๐‘ข๐œ‰(๐‘ข)๎‚ถ๐‘(๐‘ )๐‘‘๐‘ 1/๐›พ๎ƒฐ1๐‘‘๐‘ข๐‘‘๐‘ฃ>e,(2.52) then (๐ธ) is oscillatory.

Proof. Conditions (2.29) and (2.52) guarantee the oscillation of (๐ธ1) and (๐ธ3), respectively. The assertion now follows from Theorem 2.18.

Example 2.20. We consider once more the third-order differential equation (๐ธ๐‘ฅ1) with the same restrictions as in Example 2.10. We set ๐œ‰(๐‘ก)=๐›ผ0๐‘ก, where ๐›ผ0โˆš=(1+โˆš๐œ”)/2๐œ”. Then condition (2.52) takes the form ๐‘3๎€ท1โˆ’๐›ผ0๎€ธ๎€ท1โˆ’๐›ผ01/3๎€ธ3๐›ผ20๎€ทln๐œ”๐›ผ20๎€ธ>1,27๐‘’(2.53) which by Corollary 2.19, implies the oscillation of (๐ธ๐‘ฅ1).

The following results are obvious.

Theorem 2.21. Let (1.3) hold and ๐›พโ‰ฅ1. Assume that both of the first-order advanced equations (๐ธ2) and (๐ธ3) are oscillatory, then (๐ธ) is oscillatory.

Corollary 2.22. Let ๐›พโ‰ฅ1. Assume that (1.3), (2.28), (2.41), (2.46), and (2.52) hold. Then (๐ธ) is oscillatory.

Example 2.23. We recall again the differential equation (๐ธ๐‘ฅ2) with the same assumptions as in Example 2.16. We set ๐œ‰(๐‘ก)=๐›ผ0๐‘ก with ๐›ผ0โˆš=(1+โˆš๐œ”)/2๐œ”. Then condition (2.52) reduces to ๐‘1/3๎€ท1โˆ’๐›ผ0๎€ธ๎€ท1โˆ’๐›ผ50๎€ธ1/3๐›ผ08/3๎€ทln๐œ”๐›ผ20๎€ธ>51/3๐‘’,(2.54) which, by Corollary 2.22, guarantees the oscillation of (๐ธ๐‘ฅ2).

The following result is intended to exclude Case (III) of Lemma 2.4.

Theorem 2.24. Let ๐‘ฅ(๐‘ก) be a nonoscillatory solution of (๐ธ). Assume that (1.2) holds. If the first-order delay differential equation ๐‘ง๎…ž๎‚ต๎€œ(๐‘ก)+๐‘ก๐‘ก1๐‘ž๎‚ถ(๐‘ )๐‘‘๐‘ 1/๐›พ๎‚ต๎€œโˆž๐‘กaโˆ’1/๐›พ๎‚ถ๐‘“(๐‘ )๐‘‘๐‘ 1/๐›พ[๐œ](๐‘ง(๐‘ก))=0.(๐ธ4) is oscillatory, then Case (III) cannot hold.

Proof. Let ๐‘ฅ(๐‘ก) be a positive solution of (๐ธ), satisfying Case (III) of Lemma 2.4. Using that ๐‘Ž(๐‘ก)[๐‘ฅ๎…ž๎…ž(๐‘ก)]๐›พ is increasing, we find that โˆ’๐‘ฅ๎…ž๎€œ(๐‘ก)โ‰ฅโˆž๐‘ก๐‘ฅ๎…ž๎…ž๎€œ(๐‘ )d๐‘ =โˆž๐‘ก๎€ท๐‘Ž1/๐›พ(๐‘ )๐‘ฅ๎…ž๎…ž๎€ธ๐‘Ž(๐‘ )โˆ’1/๐›พ(๐‘ )d๐‘ โ‰ฅ๐‘Ž(๐‘ก)1/๐›พ๐‘ฅ๎…ž๎…ž๎€œ(๐‘ก)โˆž๐‘ก๐‘Žโˆ’1/๐›พ(๐‘ )d๐‘ .(2.55) Integrating the inequality [๐‘Ž(๐‘ก)[๐‘ฅ๎…ž๎…ž(๐‘ก)]๐›พ]๎…žโ‰ฅ๐‘ž(๐‘ก)๐‘“(๐‘ฅ[๐œ(๐‘ก)]) from ๐‘ก1 to ๐‘ก, we have ๎€บ๐‘ฅ๐‘Ž(๐‘ก)๎…ž๎…ž(๎€ป๐‘ก)๐›พโ‰ฅ๎€œ๐‘ก๐‘ก1[][])๎€œ๐‘ž(๐‘ )๐‘“(๐‘ฅ๐œ(๐‘ )d๐‘ )โ‰ฅ๐‘“(๐‘ฅ๐œ(๐‘ก)๐‘ก๐‘ก1๐‘ž(๐‘ )d๐‘ .(2.56) Thus, ๐‘Ž1/๐›พ(๐‘ก)๐‘ฅ๎…ž๎…ž(๐‘ก)โ‰ฅ๐‘“1/๐›พ[๐œ])๎‚ต๎€œ(๐‘ฅ(๐‘ก)๐‘ก๐‘ก1๐‘ž๎‚ถ(๐‘ )d๐‘ 1/๐›พ.(2.57) Combining (2.57) with (2.55), we find 0โ‰ฅ๐‘ฅ๎…ž๎‚ต๎€œ(๐‘ก)+๐‘ก๐‘ก1๐‘ž๎‚ถ(๐‘ )d๐‘ 1/๐›พ๎‚ต๎€œโˆž๐‘ก๐‘Žโˆ’1/๐›พ๎‚ถ๐‘“(๐‘ )d๐‘ 1/๐›พ[๐œ](๐‘ฅ(๐‘ก)).(2.58) It follows from [16, Theorem 1] that the corresponding differential equation (๐ธ4) also has a positive solution. A contradiction. For that reason, ๐‘ฅ(๐‘ก) cannot satisfy Case (III).

The following results are immediate.

Theorem 2.25. Let (1.2) hold and 0<๐›พโ‰ค1. Assume that both of the first-order advanced equations (๐ธ1) and (๐ธ4) are oscillatory, then (๐ธ) has property (B).

Theorem 2.26. Let (1.2) hold and 0<๐›พโ‰ค1. Assume that all of the three first-order advanced equations (๐ธ1), (๐ธ3), and (๐ธ4) are oscillatory, then (๐ธ) is oscillatory.

Theorem 2.27. Let (1.2) hold and ๐›พโ‰ฅ1. Assume that both of the first-order advanced equations (๐ธ2) and (๐ธ4) are oscillatory, then (๐ธ) has property (B).

Theorem 2.28. Let (1.2) hold and ๐›พโ‰ฅ1. Assume that all of the three first-order advanced equations (๐ธ2), (๐ธ3), and (๐ธ4) are oscillatory, then (๐ธ) is oscillatory.

3. Summary

In this paper, we have presented new comparison theorems for deducing the property (B)/oscillation of (๐ธ) from the oscillation of a set of the suitable first-order delay/advanced differential equation. We were able to present such criteria for studied properties that employ all coefficients and functions included in studied equations. Our method essentially simplifies the examination of the third-order equations, and, what is more, it supports backward the research on the first-order delay/advanced differential equations. Our results here extend and complement latest ones of Grace et al. [10], Agarwal et al. [1โ€“3], Cecchi et al. [6], Parhi and Pardi [15], and the present authors [4, 8]. The suitable illustrative examples are also provided.