About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 120358, 20 pages
http://dx.doi.org/10.1155/2012/120358
Research Article

Double Discretization Difference Schemes for Partial Integrodifferential Option Pricing Jump Diffusion Models

Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Received 10 September 2012; Revised 7 November 2012; Accepted 7 November 2012

Academic Editor: Carlos Vazquez

Copyright © 2012 M.-C. Casabán et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Y. Campbell, A. W. Lo, and A. C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, Princeton, NJ, USA, 1997.
  2. S. Heston, “A closed-form solution for options with stochastic volatility with applications to bond and currency options,” Review of Financial Studies, vol. 6, no. 2, pp. 327–343, 1993.
  3. J. Hull and A. White, “The pricing of options with stochastic volatilities,” The Journal of Finance, vol. 42, no. 2, pp. 281–300, 1987.
  4. J. C. Cox and S. A. Ross, “The valuation of options for alternative stochastic processes,” Journal of Financial Economics, vol. 3, no. 1-2, pp. 145–166, 1976.
  5. B. Dupire, “Pricing with a smile,” Risk Magazine, vol. 1, pp. 18–20, 1994.
  6. S. G. Kou, “A jump diusion model for option pricing,” Management Science, vol. 48, no. 8, pp. 1086–1101, 2002.
  7. R. C. Merton, “Option pricing when the underlying stocks are discontinuous,” Journal of Financial Economics, vol. 3, pp. 1125–2144, 1976.
  8. O. E. Barndorff-Nielsen, “Processes of normal inverse Gaussian type,” Finance and Stochastics, vol. 2, no. 1, pp. 41–68, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. E. Eberlein, “Application of generalized hyperbolic Lévy motions to finance,” in Lévy Processes|Theory and Applications, O. Barndor-Nielsen, T. Mikosch, and S. Resnick, Eds., pp. 319–336, Birkhäuser, Boston, Mass, USA, 2001. View at Zentralblatt MATH
  10. I. Koponen, “Analytic approach to the problem of convergence of truncated Lévy ights towards the Gaussian stochastic process,” Physical Review E, vol. 52, no. 1, pp. 1197–1199, 1995.
  11. D. Madan and F. Milne, “Option pricing with variance gamma martingale components,” Mathematical Finance, vol. 1, no. 4, pp. 39–55, 1991.
  12. R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2004.
  13. A. Pascucci, PDE and Martingale Methods in Option Pricing, vol. 2 of Bocconi & Springer Series, Springer, Milan, Italy, 2011. View at Publisher · View at Google Scholar
  14. L. Andersen and J. Andreasen, “Jump-diffusion processes: volatility smile fitting and numerical methods for option pricing,” Review of Derivatives Research, vol. 4, no. 3, pp. 231–262, 2000.
  15. A.-M. Matache, P.-A. Nitsche, and C. Schwab, “Wavelet Galerkin pricing of American options on Lévy driven assets,” Quantitative Finance, vol. 5, no. 4, pp. 403–424, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. A.-M. Matache, T. von Petersdorff, and C. Schwab, “Fast deterministic pricing of options on Lévy driven assets,” Mathematical Modelling and Numerical Analysis, vol. 38, no. 1, pp. 37–71, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. A.-M. Matache, C. Schwab, and T. P. Wihler, “Fast numerical solution of parabolic integrodifferential equations with applications in finance,” SIAM Journal on Scientific Computing, vol. 27, no. 2, pp. 369–393, 2005. View at Publisher · View at Google Scholar
  18. F. Fang and C. W. Oosterlee, “A novel pricing method for European options based on Fourier-cosine series expansions,” SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 826–848, 2008/09. View at Publisher · View at Google Scholar
  19. S. Pagliarani, A. Pascucci, and C. Riga, “Adjoint expansions in local Lévy models,” SSRN eLibrary, 2011.
  20. E. Benhamou, E. Gobet, and M. Miri, “Smart expansion and fast calibration for jump diffusions,” Finance and Stochastics, vol. 13, no. 4, pp. 563–589, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. A. Almendral and C. W. Oosterlee, “Accurate evaluation of European and American options under the CGMY process,” SIAM Journal on Scientific Computing, vol. 29, no. 1, pp. 93–117, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. R. Cont and E. Voltchkova, “A finite difference scheme for option pricing in jump diffusion and exponential Lévy models,” SIAM Journal on Numerical Analysis, vol. 43, no. 4, pp. 1596–1626, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. Y. d'Halluin, P. A. Forsyth, and G. Labahn, “A penalty method for American options with jump diffusion processes,” Numerische Mathematik, vol. 97, no. 2, pp. 321–352, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. E. W. Sachs and A. K. Strauss, “Efficient solution of a partial integro-differential equation in finance,” Applied Numerical Mathematics, vol. 58, no. 11, pp. 1687–1703, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. S. Salmi and J. Toivanen, “An iterative method for pricing American options under jump-diffusion models,” Applied Numerical Mathematics, vol. 61, no. 7, pp. 821–831, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. D. Tavella and C. Randall, Pricing Financial Instruments, Wiley, New York, NY, USA, 2000.
  27. J. Toivanen, “Numerical valuation of European and American options under Kou's jump-diffusion model,” SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 1949–1970, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. A. Almendral and C. W. Oosterlee, “Numerical valuation of options with jumps in the underlying,” Applied Numerical Mathematics, vol. 53, no. 1, pp. 1–18, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  29. M. Briani, C. La Chioma, and R. Natalini, “Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory,” Numerische Mathematik, vol. 98, no. 4, pp. 607–646, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. R. Company, L. Jódar, E. Ponsoda, and C. Ballester, “Numerical analysis and simulation of option pricing problems modeling illiquid markets,” Computers & Mathematics with Applications, vol. 59, no. 8, pp. 2964–2975, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. R. Kangro and R. Nicolaides, “Far field boundary conditions for Black-Scholes equations,” SIAM Journal on Numerical Analysis, vol. 38, no. 4, pp. 1357–1368, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  32. H. Windcli, P. A. Forsyth, and K. R. Vetzal, “Analysis of the stability of the stability of the linear boundary condition for the Black-Scholes equation,” Journal of Computational Finance, vol. 8, no. 1, pp. 65–92, 2004.
  33. P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Computer Science and Applied Mathematics, Academic Press, New York, NY, USA, 2nd edition, 1984.
  34. P. Linz, Analytical and Numerical Methods for Volterra Equations, vol. 7, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1985. View at Publisher · View at Google Scholar
  35. G. D. Smith, Numerical Solution of Partial Differential Equations, Clarendon Press, Oxford, UK, 3rd edition, 1985.