Abstract

The pseudoparabolic regularization technique is employed to study the local well-posedness of strong solutions for a nonlinear dispersive model, which includes the famous Camassa-Holm equation. The local well-posedness is established in the Sobolev space ๐ป๐‘ (๐‘…) with ๐‘ >3/2 via a limiting procedure.

1. Introduction

In recent years, extensive research has been carried out worldwide to study highly nonlinear equations including the Camassa-Holm (CH) equation and its various generalizations [1โ€“6]. It is shown in [7โ€“9] that the inverse spectral or scattering approach is a powerful technique to handle the Camassa-Holm equation and analyze its dynamics. It is pointed out in [10โ€“12] that the CH equation gives rise to geodesic flow of a certain invariant metric on the Bott-Virasoro group, and this geometric illustration leads to a proof that the Least Action Principle holds. Li and Olver [13] established the local well-posedness to the CH model in the Sobolev space ๐ป๐‘ (๐‘…) with ๐‘ >3/2 and gave conditions on the initial data that lead to finite time blow-up of certain solutions. Constantin and Escher [14] proved that the blow-up occurs in the form of breaking waves, namely, the solution remains bounded but its slope becomes unbounded in finite time. Hakkaev and Kirchev [15] investigated a generalized form of the Camassa-Holm equation with high order nonlinear terms and obtained the orbit stability of the traveling wave solutions under certain assumptions. Lai and Wu [16] discussed a generalized Camassa-Holm model and acquired its local existence and uniqueness. Recently, Li et al. [17] investigated the generalized Camassa-Holm equation ๐‘ข๐‘กโˆ’๐‘ข๐‘ก๐‘ฅ๐‘ฅ+๐‘˜๐‘ข๐‘š๐‘ข๐‘ฅ+(๐‘š+3)๐‘ข๐‘š+1๐‘ข๐‘ฅ=(๐‘š+2)๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ+๐‘ข๐‘š+1๐‘ข๐‘ฅ๐‘ฅ๐‘ฅ,(1.1) where ๐‘šโ‰ฅ0 is a natural number and ๐‘˜โ‰ฅ0. The authors in [17] assume that the initial value satisfies the sign condition and establish the global existence of solutions for (1.1).

In this paper, we will study the following generalization of (1.1): ๐‘ข๐‘กโˆ’๐‘ข๐‘ก๐‘ฅ๐‘ฅ+๐‘˜๐‘ข๐‘š๐‘ข๐‘ฅ+(๐‘š+3)๐‘ข๐‘š+1๐‘ข๐‘ฅ=(๐‘š+2)๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ+๐‘ข๐‘š+1๐‘ข๐‘ฅ๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ๎€ธ,(1.2) where ๐‘šโ‰ฅ0 is a natural number, ๐‘˜โ‰ฅ0, and ๐œ† is a constant.

The objective of this paper is to study the local well-posedness of (1.2). Its local well-posedness of strong solutions in the Sobolev space ๐ป๐‘ (๐‘…) with ๐‘ >3/2 is investigated by using the pseudoparabolic regularization method. Comparing with the work by Li et al. [17], (1.2) considered in this paper possesses a conservation law different to that in [17] (see Lemma 3.2 in Section 3). Also (1.2) contains a dissipative term ๐œ†(๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ), which causes difficulty to establish its local and global existence in the Sobolev space. It should be mentioned that the existence and uniqueness of local strong solutions for the generalized nonlinear Camassa-Holm models like (1.2) have never been investigated in the literatures.

The organization of this work is as follows. The main result is given in Section 2. Section 3 establishes several lemmas, and the last section gives the proof of the main result.

2. Main Result

Firstly, we introduce several notations.

๐ฟ๐‘=๐ฟ๐‘(๐‘…)(1โ‰ค๐‘<+โˆž) is the space of all measurable functions โ„Ž such that โ€–โ„Žโ€–๐‘๐ฟ๐‘=โˆซ๐‘…|โ„Ž(๐‘ก,๐‘ฅ)|๐‘๐‘‘๐‘ฅ<โˆž. We define ๐ฟโˆž=๐ฟโˆž(๐‘…) with the standard norm โ€–โ„Žโ€–๐ฟโˆž=inf๐‘š(๐‘’)=0sup๐‘ฅโˆˆ๐‘…โงต๐‘’|โ„Ž(๐‘ก,๐‘ฅ)|. For any real number ๐‘ , ๐ป๐‘ =๐ป๐‘ (๐‘…) denotes the Sobolev space with the norm defined by โ€–โ„Žโ€–๐ป๐‘ =๎‚ต๎€œ๐‘…๎€ท1+|๐œ‰|2๎€ธ๐‘ |||๎|||โ„Ž(๐‘ก,๐œ‰)2๎‚ถ๐‘‘๐œ‰1/2<โˆž,(2.1) where ๎โˆซโ„Ž(๐‘ก,๐œ‰)=๐‘…๐‘’โˆ’๐‘–๐‘ฅ๐œ‰โ„Ž(๐‘ก,๐‘ฅ)๐‘‘๐‘ฅ.

For ๐‘‡>0 and nonnegative number ๐‘ , ๐ถ([0,๐‘‡);๐ป๐‘ (๐‘…)) denotes the Frechet space of all continuous ๐ป๐‘ -valued functions on [0,๐‘‡). We set ฮ›=(1โˆ’๐œ•2๐‘ฅ)1/2. For simplicity, throughout this paper, we let ๐‘ denote any positive constant that is independent of parameter ๐œ€.

We consider the Cauchy problem of (1.2) ๐‘ข๐‘กโˆ’๐‘ข๐‘ก๐‘ฅ๐‘ฅ๐‘˜=โˆ’๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ๎€ธ๐‘ข,๐‘˜โ‰ฅ0,๐‘šโ‰ฅ0,(0,๐‘ฅ)=๐‘ข0(๐‘ฅ).(2.2)

Now, we give our main results for problem of (2.2).

Theorem 2.1. Suppose that the initial function ๐‘ข0(๐‘ฅ) belongs to the Sobolev space ๐ป๐‘ (๐‘…) with ๐‘ >3/2 and ๐œ† is a constant. Then, there is a ๐‘‡>0, which depends on โ€–๐‘ข0โ€–๐ป๐‘ , such that problem (2.2) has a unique solution ๐‘ข(๐‘ก,๐‘ฅ) satisfying [๐‘ข(๐‘ก,๐‘ฅ)โˆˆ๐ถ(0,๐‘‡);๐ป๐‘ ๎™๐ถ(๐‘…))1๎€ท[0,๐‘‡);๐ป๐‘ โˆ’1๎€ธ(๐‘…).(2.3)

3. Local Well-Posedness

In order to prove Theorem 2.1, we consider the associated regularized problem ๐‘ข๐‘กโˆ’๐‘ข๐‘ก๐‘ฅ๐‘ฅ+๐œ€๐‘ข๐‘ก๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘˜=โˆ’๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ๎€ธ,๐‘ข(0,๐‘ฅ)=๐‘ข0(๐‘ฅ),(3.1) where the parameter ๐œ€ satisfies 0<๐œ€<1/4.

Lemma 3.1. For ๐‘ โ‰ฅ1 and ๐‘“(๐‘ฅ)โˆˆ๐ป๐‘ (๐‘…) and letting ๐‘˜1>0 be an integer such that ๐‘˜1โ‰ค๐‘ โˆ’1, ๐‘“,๐‘“โ€ฒ,โ€ฆ,๐‘“๐‘˜1 are uniformly continuous bounded functions that converge to 0 at ๐‘ฅ=ยฑโˆž.

The proof of Lemma 3.1 was stated on page 559 by Bona and Smith [18].

Lemma 3.2. If ๐‘ข(๐‘ก,๐‘ฅ)โˆˆ๐ป๐‘ (๐‘ >7/2) is a solution to problem (3.1), it holds that ๎€œ๐‘…๎€ท๐‘ข2+๐‘ข2๐‘ฅ+๐œ€๐‘ข2๐‘ฅ๐‘ฅ๎€ธ๎€œ๐‘‘๐‘ฅ=๐‘…๎€ท๐‘ข20+๐‘ข20๐‘ฅ+๐œ€๐‘ข20๐‘ฅ๐‘ฅ๎€ธ๎€œ๐‘‘๐‘ฅ+2๐œ†๐‘ก0๎€œ๐‘…๎€ท๐‘ข2+๐‘ข2๐‘ฅ๎€ธ๐‘‘๐‘ฅ.(3.2)

Proof. Using Lemma 3.1, we have ๐‘ข(๐‘ก,ยฑโˆž)=๐‘ข๐‘ฅ(๐‘ก,ยฑโˆž)=๐‘ข๐‘ฅ๐‘ฅ(๐‘ก,ยฑโˆž)=๐‘ข๐‘ฅ๐‘ฅ๐‘ฅ(๐‘ก,ยฑโˆž)=0. The integration by parts results in ๎€œ๐‘…๐‘ข๐‘š+2๐‘ข๐‘ฅ๐‘ฅ๐‘ฅ๎€œ๐‘‘๐‘ฅ=๐‘…๐‘ข๐‘š+2๐‘‘๐‘ข๐‘ฅ๐‘ฅ=๐‘ข๐‘š+2๐‘ข๐‘ฅ๐‘ฅโˆฃ+โˆžโˆ’โˆž๎€œโˆ’(๐‘š+2)๐‘…๐‘ข๐‘š+1๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎€œ๐‘‘๐‘ฅ=โˆ’(๐‘š+2)๐‘…๐‘ข๐‘š+1๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๐‘‘๐‘ฅ.(3.3)
Direct calculation and integration by parts give rise to 12๐‘‘๎€œ๐‘‘๐‘ก๐‘…๎€ท๐‘ข2+๐‘ข2๐‘ฅ+๐œ€๐‘ข2๐‘ฅ๐‘ฅ๎€ธ=๎€œ๐‘‘๐‘ฅ๐‘…๎€ท๐‘ข๐‘ข๐‘ก+๐‘ข๐‘ฅ๐‘ข๐‘ก๐‘ฅ+๐œ€๐‘ข๐‘ฅ๐‘ฅ๐‘ข๐‘ก๐‘ฅ๐‘ฅ๎€ธ=๎€œ๐‘‘๐‘ฅ๐‘…๐‘ข๎€ท๐‘ข๐‘กโˆ’๐‘ข๐‘ก๐‘ฅ๐‘ฅ+๐œ€๐‘ข๐‘ก๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๎€ธ=๎€œ๐‘‘๐‘ฅ๐‘…๐‘ข๎‚ƒโˆ’๐‘˜๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ๎€ธ๎‚„=๎€œ๐‘‘๐‘ฅ๐‘…๐‘ข๎€บ(๐‘š+2)๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ+๐‘ข๐‘š+1๐‘ข๐‘ฅ๐‘ฅ๐‘ฅ๎€ป๎€œ๐‘‘๐‘ฅ+๐œ†๐‘…๎€ท๐‘ข2โˆ’๐‘ข๐‘ข๐‘ฅ๐‘ฅ๎€ธ=๎€œ๐‘‘๐‘ฅ๐‘…๎€บ(๐‘š+2)๐‘ข๐‘š+1๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ+๐‘ข๐‘š+2๐‘ข๐‘ฅ๐‘ฅ๐‘ฅ๎€ป๎€œ๐‘‘๐‘ฅ+๐œ†๐‘…๎€ท๐‘ข2+๐‘ข2๐‘ฅ๎€ธ๎€œ๐‘‘๐‘ฅ=๐œ†๐‘…๎€ท๐‘ข2+๐‘ข2๐‘ฅ๎€ธ๐‘‘๐‘ฅ,(3.4) in which we have used (3.3). From (3.4), we obtain the conservation law (3.2).

Lemma 3.3. Let ๐‘ โ‰ฅ7/2. The function ๐‘ข(๐‘ก,๐‘ฅ) is a solution of problem (3.1) and the initial value ๐‘ข0(๐‘ฅ)โˆˆ๐ป๐‘ . Then, the following inequality holds: โ€–๐‘ขโ€–2๐ป1โ‰ค๎€œ๐‘…๎€ท๐‘ข20+๐‘ข20๐‘ฅ+๐œ€๐‘ข20๐‘ฅ๐‘ฅ๎€ธ๐‘‘๐‘ฅ,๐‘–๐‘“๐œ†โ‰ค0,โ€–๐‘ขโ€–2๐ป1โ‰ค๐‘’2๐œ†๐‘ก๎€œ๐‘…๎€ท๐‘ข20+๐‘ข20๐‘ฅ+๐œ€๐‘ข20๐‘ฅ๐‘ฅ๎€ธ๐‘‘๐‘ฅ,๐‘–๐‘“๐œ†>0.(3.5) For ๐‘žโˆˆ(0,๐‘ โˆ’1], there is a constant ๐‘ independent of ๐œ€ such that ๎€œ๐‘…๎€ทฮ›๐‘ž+1๐‘ข๎€ธ2๎€œ๐‘‘๐‘ฅโ‰ค๐‘…๎‚ƒ๎€ทฮ›๐‘ž+1๐‘ข0๎€ธ2๎€ทฮ›+๐œ€๐‘ž๐‘ข0๐‘ฅ๐‘ฅ๎€ธ2๎‚„๎€œ๐‘‘๐‘ฅ+๐‘๐‘ก0โ€–๐‘ขโ€–2๐ป๐‘ž+1๎‚€||๐œ†||+๎€ทโ€–๐‘ขโ€–๐ฟ๐‘šโˆ’1โˆž+โ€–๐‘ขโ€–๐‘š๐ฟโˆž๎€ธโ€–โ€–๐‘ข๐‘ฅโ€–โ€–๐ฟโˆž+โ€–๐‘ขโ€–๐ฟ๐‘šโˆ’1โˆžโ€–โ€–๐‘ข๐‘ฅโ€–โ€–2๐ฟโˆž๎‚๐‘‘๐œ.(3.6) For ๐‘žโˆˆ[0,๐‘ โˆ’1], there is a constant ๐‘ independent of ๐œ€ such that โ€–โ€–๐‘ข(1โˆ’2๐œ€)๐‘กโ€–โ€–๐ป๐‘žโ‰ค๐‘โ€–๐‘ขโ€–๐ป๐‘ž+1๎€ท||๐œ†||+๎€ทโ€–๐‘ขโ€–๐ฟ๐‘šโˆ’1โˆž+โ€–๐‘ขโ€–๐‘š๐ฟโˆž๎€ธโ€–๐‘ขโ€–๐ป1+โ€–๐‘ขโ€–๐‘š๐ฟโˆžโ€–โ€–๐‘ข๐‘ฅโ€–โ€–๐ฟโˆž+โ€–๐‘ขโ€–๐ฟ๐‘šโˆ’1โˆžโ€–โ€–๐‘ข๐‘ฅโ€–โ€–2๐ฟโˆž๎‚.(3.7)

The proof of this lemma is similar to that of Lemmaโ€‰โ€‰3.5 in [17]. Here we omit it.

Lemma 3.4. Let ๐‘Ÿ and ๐‘ž be real numbers such that โˆ’๐‘Ÿ<๐‘žโ‰ค๐‘Ÿ. Then, โ€–๐‘ข๐‘ฃโ€–๐ป๐‘žโ‰ค๐‘โ€–๐‘ขโ€–๐ป๐‘Ÿโ€–๐‘ฃโ€–๐ป๐‘ž1,๐‘–๐‘“๐‘Ÿ>2,โ€–๐‘ข๐‘ฃโ€–๐ป๐‘Ÿ+๐‘žโˆ’1/2โ‰ค๐‘โ€–๐‘ขโ€–๐ป๐‘Ÿโ€–๐‘ฃโ€–๐ป๐‘ž1,๐‘–๐‘“๐‘Ÿ<2.(3.8)

This lemma can be found in [19] or [20].

Lemma 3.5. Let ๐‘ข0(๐‘ฅ)โˆˆ๐ป๐‘ (๐‘…) with ๐‘ >3/2. Then, the Cauchy problem (3.1) has a unique solution ๐‘ข(๐‘ก,๐‘ฅ)โˆˆ๐ถ([0,๐‘‡];๐ป๐‘ (๐‘…)), where ๐‘‡>0 depends on โ€–๐‘ข0โ€–๐ป๐‘ (๐‘…). If ๐‘ โ‰ฅ7/2, the solution ๐‘ขโˆˆ๐ถ([0,+โˆž);๐ป๐‘ ) exists for all time.

Proof. Letting ๐ท=(1โˆ’๐œ•2๐‘ฅ+๐œ€๐œ•4๐‘ฅ)โˆ’1, we know that ๐ทโˆถ๐ป๐‘ โ†’๐ป๐‘ +4 is a bounded linear operator. Applying the operator ๐ท on both sides of the first equation of system (3.1) and then integrating the resultant equation with respect to ๐‘ก over the interval (0,๐‘ก), we get ๐‘ข(๐‘ก,๐‘ฅ)=๐‘ข0(๎€œ๐‘ฅ)+๐‘ก0๐ท๎‚ƒโˆ’๐‘˜๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ๎€ธ๎‚„๐‘‘๐‘ก.(3.9) Suppose that both ๐‘ข and ๐‘ฃ are in the closed ball ๐ต๐‘€0(0) of radius ๐‘€0 about the zero function in ๐ถ([0,๐‘‡];๐ป๐‘ (๐‘…)) and ๐ด is the operator in the right-hand side of (3.9). For any fixed ๐‘กโˆˆ[0,๐‘‡], we obtain โ€–โ€–โ€–๎€œ๐‘ก0๐ท๎‚ƒโˆ’๐‘˜๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ๎€ธ๎‚„โˆ’๎€œ๐‘‘๐‘ก๐‘ก0๐ท๎‚ƒโˆ’๐‘˜๎€ท๐‘ฃ๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ฃ๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ฃ๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ฃ๐‘š๐‘ฃ2๐‘ฅ๎€ธ+๐‘ฃ๐‘š๐‘ฃ๐‘ฅ๐‘ฃ๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ฃโˆ’๐‘ฃ๐‘ฅ๐‘ฅ๎€ธ๎‚„โ€–โ€–โ€–๐‘‘๐‘ก๐ป๐‘ โ‰ค๐‘‡๐ถ1๎‚ตsup0โ‰ค๐‘กโ‰ค๐‘‡โ€–๐‘ขโˆ’๐‘ฃโ€–๐ป๐‘ +sup0โ‰ค๐‘กโ‰ค๐‘‡โ€–โ€–๐‘ข๐‘š+1โˆ’๐‘ฃ๐‘š+1โ€–โ€–๐ป๐‘ +sup0โ‰ค๐‘กโ‰ค๐‘‡โ€–โ€–๐‘ข๐‘š+2โˆ’๐‘ฃ๐‘š+2โ€–โ€–๐ป๐‘ +sup0โ‰ค๐‘กโ‰ค๐‘‡โ€–โ€–๐ท๐œ•๐‘ฅ๎€บ๐‘ข๐‘š๐‘ข2๐‘ฅโˆ’๐‘ฃ๐‘š๐‘ฃ2๐‘ฅ๎€ปโ€–โ€–๐ป๐‘ +sup0โ‰ค๐‘กโ‰ค๐‘‡โ€–โ€–๐ท๎€บ๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅโˆ’๐‘ฃ๐‘š๐‘ฃ๐‘ฅ๐‘ฃ๐‘ฅ๐‘ฅ๎€ปโ€–โ€–๐ป๐‘ ๎‚ถ,(3.10) where ๐ถ1 may depend on ๐œ€. The algebraic property of ๐ป๐‘ 0(๐‘…) with ๐‘ 0>1/2 derives โ€–โ€–๐‘ข๐‘š+2โˆ’๐‘ฃ๐‘š+2โ€–โ€–๐ป๐‘ =โ€–โ€–๎€ท๐‘ข(๐‘ขโˆ’๐‘ฃ)๐‘š+1+๐‘ข๐‘š๐‘ฃ+โ‹ฏ+๐‘ข๐‘ฃ๐‘š+๐‘ฃ๐‘š+1๎€ธโ€–โ€–๐ป๐‘ โ‰คโ€–(๐‘ขโˆ’๐‘ฃ)โ€–๐ป๐‘ ๐‘š+1๎“๐‘—=0โ€–๐‘ขโ€–๐ป๐‘š+1โˆ’๐‘—๐‘ โ€–๐‘ฃโ€–๐‘—๐ป๐‘ ,โ‰ค๐‘€0๐‘š+1โ€–๐‘ขโˆ’๐‘ฃโ€–๐ป๐‘ ,โ€–โ€–๐‘ข๐‘š+1โˆ’๐‘ฃ๐‘š+1โ€–โ€–๐ป๐‘ โ‰ค๐‘€๐‘š0โ€–๐‘ขโˆ’๐‘ฃโ€–๐ป๐‘ ,โ€–โ€–๐ท๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅโˆ’๐‘ฃ๐‘š๐‘ฃ2๐‘ฅ๎€ธโ€–โ€–๐ป๐‘ โ‰คโ€–โ€–๐ท๐œ•๐‘ฅ๎€บ๐‘ข๐‘š๎€ท๐‘ข2๐‘ฅโˆ’๐‘ฃ2๐‘ฅโ€–โ€–๎€ธ๎€ป๐ป๐‘ +โ€–โ€–๐ท๐œ•๐‘ฅ๎€บ๐‘ฃ2๐‘ฅ(๐‘ข๐‘šโˆ’๐‘ฃ๐‘š)๎€ปโ€–โ€–๐ป๐‘ ๎€ทโ€–โ€–๐‘ขโ‰ค๐ถ๐‘š๎€ท๐‘ข2๐‘ฅโˆ’๐‘ฃ2๐‘ฅ๎€ธโ€–โ€–๐ป๐‘ โˆ’1+โ€–โ€–๐‘ฃ2๐‘ฅ(๐‘ข๐‘šโˆ’๐‘ฃ๐‘š)โ€–โ€–๐ป๐‘ โˆ’1๎€ธโ‰ค๐ถ๐‘€0๐‘š+1โ€–๐‘ขโˆ’๐‘ฃโ€–๐ป๐‘ .(3.11) Using the first inequality of Lemma 3.4 gives rise to โ€–โ€–๐ท๎€บ๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅโˆ’๐‘ฃ๐‘š๐‘ฃ๐‘ฅ๐‘ฃ๐‘ฅ๐‘ฅ๎€ปโ€–โ€–๐ป๐‘ =โ€–โ€–โ€–12๐ท๎€บ๐‘ข๐‘š๎€ท๐‘ข2๐‘ฅ๎€ธ๐‘ฅโˆ’๐‘ฃ๐‘š๎€ท๐‘ฃ2๐‘ฅ๎€ธ๐‘ฅ๎€ปโ€–โ€–โ€–๐ป๐‘ โ‰ค12๎‚€โ€–โ€–๐ท๎€บ๐‘ข๐‘š๎€ท๐‘ข2๐‘ฅโˆ’๐‘ฃ2๐‘ฅ๎€ธ๐‘ฅ๎€ปโ€–โ€–๐ป๐‘ +โ€–โ€–๐ท๐‘ฃ๎€บ๎€ท2๐‘ฅ๎€ธ๐‘ฅ(๐‘ข๐‘šโˆ’๐‘ฃ๐‘š)๎€ปโ€–โ€–๐ป๐‘ ๎‚๎‚€โ€–โ€–๐‘ขโ‰ค๐ถ๐‘š๎€ท๐‘ข2๐‘ฅโˆ’๐‘ฃ2๐‘ฅ๎€ธ๐‘ฅโ€–โ€–๐ป๐‘ โˆ’2+โ€–โ€–๎€ท๐‘ฃ2๐‘ฅ๎€ธ๐‘ฅ(๐‘ข๐‘šโˆ’๐‘ฃ๐‘š)โ€–โ€–๐ป๐‘ โˆ’2๎‚๎€ทโ‰ค๐ถโ€–๐‘ข๐‘šโ€–๐ป๐‘ โ€–โ€–๐‘ข2๐‘ฅโˆ’๐‘ฃ2๐‘ฅโ€–โ€–๐ป๐‘ โˆ’1+โ€–โ€–๐‘ฃ2๐‘ฅโ€–โ€–๐ป๐‘ โˆ’1โ€–๐‘ข๐‘šโˆ’๐‘ฃ๐‘šโ€–๐ป๐‘ ๎€ธโ‰ค๐ถ๐‘€0๐‘š+1โ€–๐‘ขโˆ’๐‘ฃโ€–๐ป๐‘ ,(3.12) where ๐ถ may depend on ๐œ€. From (3.11)-(3.12), we obtain โ€–๐ด๐‘ขโˆ’๐ด๐‘ฃโ€–๐ป๐‘ โ‰ค๐œƒโ€–๐‘ขโˆ’๐‘ฃโ€–๐ป๐‘ ,(3.13) where ๐œƒ=๐‘‡๐ถ2(๐‘€๐‘š0+๐‘€0๐‘š+1) and ๐ถ2 is independent of 0<๐‘ก<๐‘‡. Choosing ๐‘‡ sufficiently small such that ๐œƒ<1, we know that ๐ด is a contraction. Similarly, it follows from (3.10) that โ€–๐ด๐‘ขโ€–๐ป๐‘ โ‰คโ€–โ€–๐‘ข0โ€–โ€–๐ป๐‘ +๐œƒโ€–๐‘ขโ€–๐ป๐‘ .(3.14) Choosing ๐‘‡ sufficiently small such that ๐œƒ๐‘€0+โ€–๐‘ข0โ€–๐ป๐‘ <๐‘€0, we deduce that ๐ด maps ๐ต๐‘€0(0) to itself. It follows from the contraction-mapping principle that the mapping ๐ด has a unique fixed point ๐‘ข in ๐ต๐‘€0(0). It completes the proof.

From the above and Lemma 3.2, we have ๎€œ๐‘…๎€ท๐‘ข2+๐‘ข2๐‘ฅ+๐œ€๐‘ข2๐‘ฅ๐‘ฅ๎€ธ๐‘‘๐‘ฅโ‰ค๐‘’2|๐œ†|๐‘ก๎€œ๐‘…๎€ท๐‘ข20+๐‘ข20๐‘ฅ+๐œ€๐‘ข20๐‘ฅ๐‘ฅ๎€ธ๐‘‘๐‘ฅ.(3.15) Therefore, โ€–โ€–๐‘ข๐‘ฅโ€–โ€–๐ฟโˆžโ‰ค๐ถ๐œ€๐‘’2|๐œ†|๐‘ก๎€œ๐‘…๎€ท๐‘ข20+๐‘ข20๐‘ฅ+๐œ€๐‘ข20๐‘ฅ๐‘ฅ๎€ธ๐‘‘๐‘ฅ,(3.16) which together with Lemma 3.3 completes the proof of the global existence.

Setting ๐œ™๐œ€(๐‘ฅ)=๐œ€โˆ’1/4๐œ™(๐œ€โˆ’1/4๐‘ฅ) with 0<๐œ€<1/4 and ๐‘ข๐œ€0=๐œ™๐œ€โ‹†๐‘ข0, we know that ๐‘ข๐œ€0โˆˆ๐ถโˆž for any ๐‘ข0โˆˆ๐ป๐‘ ,๐‘ >0. From Lemma 3.5, it derives that the Cauchy problem ๐‘ข๐‘กโˆ’๐‘ข๐‘ก๐‘ฅ๐‘ฅ+๐œ€๐‘ข๐‘ก๐‘ฅ๐‘ฅ๐‘ฅ๐‘ฅ๐‘˜=โˆ’๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎€ท+๐œ†๐‘ขโˆ’๐‘ข๐‘ฅ๐‘ฅ๎€ธ,๐‘ข(0,๐‘ฅ)=๐‘ข๐œ€0(๐‘ฅ),๐‘ฅโˆˆ๐‘…,(3.17) has a unique solution ๐‘ข๐œ€(๐‘ก,๐‘ฅ)โˆˆ๐ถโˆž([0,โˆž);๐ปโˆž).

Furthermore, we have the following.

Lemma 3.6. For ๐‘ >0,๐‘ข0โˆˆ๐ป๐‘ , it holds that โ€–โ€–๐‘ข๐œ€0๐‘ฅโ€–โ€–๐ฟโˆžโ€–โ€–๐‘ขโ‰ค๐‘0๐‘ฅโ€–โ€–๐ฟโˆž,โ€–โ€–๐‘ข(3.18)๐œ€0โ€–โ€–๐ป๐‘žโ€–โ€–๐‘ขโ‰ค๐‘,๐‘–๐‘“๐‘žโ‰ค๐‘ ,(3.19)๐œ€0โ€–โ€–๐ป๐‘žโ‰ค๐‘๐œ€(๐‘ โˆ’๐‘ž)/4โ€–โ€–๐‘ข,๐‘–๐‘“๐‘ž>๐‘ ,(3.20)๐œ€0โˆ’๐‘ข0โ€–โ€–๐ป๐‘žโ‰ค๐‘๐œ€(๐‘ โˆ’๐‘ž)/4โ€–โ€–๐‘ข,๐‘–๐‘“๐‘žโ‰ค๐‘ ,(3.21)๐œ€0โˆ’๐‘ข0โ€–โ€–๐ป๐‘ =๐‘œ(1),(3.22) where ๐‘ is a constant independent of ๐œ€.

The proof of Lemma 3.6 can be found in [16].

Remark 3.7. For ๐‘ โ‰ฅ1, using โ€–๐‘ข๐œ€โ€–๐ฟโˆžโ‰ค๐‘โ€–๐‘ข๐œ€โ€–๐ป1/2+โ‰ค๐‘โ€–๐‘ข๐œ€โ€–๐ป1, โ€–๐‘ข๐œ€โ€–2๐ป1โˆซโ‰ค๐‘๐‘…(๐‘ข2๐œ€+๐‘ข2๐œ€๐‘ฅ)๐‘‘๐‘ฅ, (3.5), (3.19), and (3.20), we know that, โ€–โ€–๐‘ข๐œ€โ€–โ€–2๐ฟโˆžโ€–โ€–๐‘ขโ‰ค๐‘๐œ€โ€–โ€–2๐ป1โ‰ค๐‘๐‘’2|๐œ†|๐‘ก๎€œ๐‘…๎€ท๐‘ข2๐œ€0+๐‘ข2๐œ€0๐‘ฅ+๐œ€๐‘ข2๐œ€0๐‘ฅ๐‘ฅ๎€ธ๐‘‘๐‘ฅโ‰ค๐‘๐‘’2|๐œ†|๐‘ก๎‚€โ€–โ€–๐‘ข๐œ€0โ€–โ€–2๐ป1โ€–โ€–๐‘ข+๐œ€๐œ€0โ€–โ€–2๐ป2๎‚โ‰ค๐‘๐‘’|2๐œ†|๐‘ก๎€ท๐‘+๐‘๐œ€ร—๐œ€(๐‘ โˆ’2)/2๎€ธโ‰ค๐‘0๐‘’2|๐œ†|๐‘ก,(3.23) where ๐‘0 is independent of ๐œ€ and ๐‘ก.

Lemma 3.8. Suppose ๐‘ข0(๐‘ฅ)โˆˆ๐ป๐‘ (๐‘…) with ๐‘ โ‰ฅ1 such that โ€–๐‘ข0๐‘ฅโ€–๐ฟโˆž<โˆž. Let ๐‘ข๐œ€0 be defined as in system (3.17). Then, there exist two positive constants ๐‘‡ and ๐‘, which are independent of ๐œ€, such that the solution ๐‘ข๐œ€ of problem (3.17) satisfies โ€–๐‘ข๐œ€๐‘ฅโ€–๐ฟโˆžโ‰ค๐‘ for any ๐‘กโˆˆ[0,๐‘‡).

Here we omit the proof of Lemma 3.8 since it is similar to Lemmaโ€‰โ€‰3.9 presented in [17].

Lemma 3.9 (see Li and Olver [13]). If ๐‘ข and ๐‘“ are functions in ๐ป๐‘ž+1โˆฉ{โ€–๐‘ข๐‘ฅโ€–๐ฟโˆž<โˆž}, then ||||๎€œ๐‘…ฮ›๐‘ž๐‘ขฮ›๐‘ž(๐‘ข๐‘“)๐‘ฅ||||โ‰คโŽงโŽชโŽชโŽจโŽชโŽชโŽฉ๐‘๐‘‘๐‘ฅ๐‘žโ€–๐‘“โ€–๐ป๐‘ž+1โ€–๐‘ขโ€–2๐ป๐‘ž๎‚€1,๐‘žโˆˆ2๎‚„,๐‘,1๐‘ž๎€ทโ€–๐‘“โ€–๐ป๐‘ž+1โ€–๐‘ขโ€–๐ป๐‘žโ€–๐‘ขโ€–๐ฟโˆž+โ€–โ€–๐‘“๐‘ฅโ€–โ€–๐ฟโˆžโ€–๐‘ขโ€–2๐ป๐‘ž+โ€–๐‘“โ€–๐ป๐‘žโ€–๐‘ขโ€–๐ป๐‘žโ€–โ€–๐‘ข๐‘ฅโ€–โ€–๐ฟโˆž๎‚,๐‘žโˆˆ(0,โˆž).(3.24)

Lemma 3.10 (see Lai and Wu [16]). For ๐‘ข,๐‘ฃโˆˆ๐ป๐‘ (๐‘…) with ๐‘ >3/2, ๐‘ค=๐‘ขโˆ’๐‘ฃ,๐‘ž>1/2, and a natural number ๐‘›, it holds that ||||๎€œ๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ ๎€ท๐‘ข๐‘›+1โˆ’๐‘ฃ๐‘›+1๎€ธ๐‘ฅ||||๎€ท๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ โ€–๐‘คโ€–๐ป๐‘žโ€–๐‘ฃโ€–๐ป๐‘ +1+โ€–๐‘คโ€–2๐ป๐‘ ๎€ธ.(3.25)

Lemma 3.11 (see Lai and Wu [16]). If 1/2<๐‘ž<min{1,๐‘ โˆ’1} and ๐‘ >3/2, then for any functions ๐‘ค,๐‘“ defined on ๐‘…, it holds that ||||๎€œ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2(๐‘ค๐‘“)๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–2๐ป๐‘žโ€–๐‘“โ€–๐ป๐‘ž||||๎€œ,(3.26)๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐‘ค๐‘ฅ๐‘“๐‘ฅ๎€ธ๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–2๐ป๐‘žโ€–๐‘“โ€–๐ป๐‘ .(3.27)

Lemma 3.12. For problem (3.17), ๐‘ >3/2, and ๐‘ข0โˆˆ๐ป๐‘ (๐‘…), there exist two positive constants ๐‘ and ๐‘€, which are independent of ๐œ€, such that the following inequalities hold for any sufficiently small ๐œ€ and ๐‘กโˆˆ[0,๐‘‡): โ€–โ€–๐‘ข๐œ€โ€–โ€–๐ป๐‘ โ‰ค๐‘€๐‘’๐‘๐‘ก,โ€–โ€–๐‘ข๐œ€โ€–โ€–๐ป1๐‘ +๐‘˜โ‰ค๐œ€โˆ’๐‘˜1/4๐‘€๐‘’๐‘๐‘ก,๐‘˜1โ€–โ€–๐‘ข>0,๐œ€๐‘กโ€–โ€–๐ป1๐‘ +๐‘˜โ‰ค๐œ€โˆ’(๐‘˜1+1)/4๐‘€๐‘’๐‘๐‘ก,๐‘˜1>โˆ’1.(3.28)

Slightly modifying the methods presented in [16] can complete the proof of Lemma 3.12.

Our next step is to demonstrate that ๐‘ข๐œ€ is a Cauchy sequence. Let ๐‘ข๐œ€ and ๐‘ข๐›ฟ be solutions of problem (3.17), corresponding to the parameters ๐œ€ and ๐›ฟ, respectively, with 0<๐œ€<๐›ฟ<1/4, and let ๐‘ค=๐‘ข๐œ€โˆ’๐‘ข๐›ฟ. Then, ๐‘ค satisfies the problem (1โˆ’๐œ€)๐‘ค๐‘กโˆ’๐œ€๐‘ค๐‘ฅ๐‘ฅ๐‘ก+๎€ท๐‘ข(๐›ฟโˆ’๐œ€)๐›ฟ๐‘ก+๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๐‘ก๎€ธ=๎€ท1โˆ’๐œ•2๐‘ฅ๎€ธโˆ’1๎‚ƒโˆ’๐œ€๐‘ค๐‘ก+(๐›ฟโˆ’๐œ€)๐‘ข๐›ฟ๐‘กโˆ’๐‘˜๐œ•๐‘š+1๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธโˆ’๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธโˆ’๐œ•๐‘ฅ๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค+๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ป+๎€บ๐‘ข๐‘š๐œ€๐‘ข๐œ€๐‘ฅ๐‘ข๐œ€๐‘ฅ๐‘ฅโˆ’๐‘ข๐‘š๐›ฟ๐‘ข๐›ฟ๐‘ฅ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๎€ป๎‚„โˆ’1๐œ•๐‘š+2๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ค+๐œ†๐‘ค,(3.29)(๐‘ฅ,0)=๐‘ค0(๐‘ฅ)=๐‘ข๐œ€0(๐‘ฅ)โˆ’๐‘ข๐›ฟ0(๐‘ฅ).(3.30)

Lemma 3.13. For ๐‘ >3/2, ๐‘ข0โˆˆ๐ป๐‘ (๐‘…), there exists ๐‘‡>0 such that the solution ๐‘ข๐œ€ of (3.17) is a Cauchy sequence in ๐ถ([0,๐‘‡];๐ป๐‘ โ‹‚๐ถ(๐‘…))1([0,๐‘‡];๐ป๐‘ โˆ’1(๐‘…)).

Proof. For ๐‘ž with 1/2<๐‘ž<min{1,๐‘ โˆ’1}, multiplying both sides of (3.29) by ฮ›๐‘ž๐‘คฮ›๐‘ž and then integrating with respect to ๐‘ฅ give rise to 12๐‘‘๎€œ๐‘‘๐‘ก๐‘…๎‚ƒ(1โˆ’๐œ€)(ฮ›๐‘ž๐‘ค)2๎€ทฮ›+๐œ€๐‘ž๐‘ค๐‘ฅ๎€ธ2๎‚„๎€œ๐‘‘๐‘ฅ=(๐œ€โˆ’๐›ฟ)๐‘…(ฮ›๐‘žฮ›๐‘ค)๎€บ๎€ท๐‘ž๐‘ข๐›ฟ๐‘ก๎€ธ+๎€ทฮ›๐‘ž๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๐‘ก๎€œ๎€ธ๎€ป๐‘‘๐‘ฅโˆ’๐œ€๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๐‘ค๐‘ก๎€œ๐‘‘๐‘ฅ+(๐›ฟโˆ’๐œ€)๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๐‘ข๐›ฟ๐‘ก1๐‘‘๐‘ฅโˆ’๎€œ๐‘š+2๐‘…(ฮ›๐‘ž๐‘ค)ฮ›๐‘ž๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅโˆ’๐‘˜๐‘‘๐‘ฅ๎€œ๐‘š+1๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐‘ฅ๎€œ๐‘‘๐‘ฅโˆ’๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅโˆ’๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค๎€ป๐‘ฅ๎€œ๐‘‘๐‘ฅโˆ’๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ป๐‘ฅ+๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€บ๐‘ข๐‘š๐œ€๐‘ข๐œ€๐‘ฅ๐‘ข๐œ€๐‘ฅ๐‘ฅโˆ’๐‘ข๐‘š๐›ฟ๐‘ข๐›ฟ๐‘ฅ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๎€ป๎€œ๐‘‘๐‘ฅ+๐œ†๐‘…ฮ›๐‘ž๐‘คฮ›๐‘ž๐‘ค๐‘‘๐‘ฅ.(3.31) It follows from the Schwarz inequality that ๐‘‘๎€œ๎‚ƒ(๐‘‘๐‘ก1โˆ’๐œ€)(ฮ›๐‘ž๐‘ค)2๎€ทฮ›+๐œ€๐‘ž๐‘ค๐‘ฅ๎€ธ2๎‚„๎‚ป๐‘‘๐‘ฅโ‰ค๐‘โ€–ฮ›๐‘ž๐‘คโ€–๐ฟ2๎€บ๎€ทโ€–โ€–ฮ›(๐›ฟโˆ’๐œ€)๐‘ž๐‘ข๐›ฟ๐‘กโ€–โ€–๐ฟ2+โ€–โ€–ฮ›๐‘ž๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๐‘กโ€–โ€–๐ฟ2๎€ธโ€–โ€–ฮ›+๐œ€๐‘žโˆ’2๐‘ค๐‘กโ€–โ€–๐ฟ2โ€–โ€–ฮ›+(๐›ฟโˆ’๐œ€)๐‘žโˆ’2๐‘ข๐›ฟ๐‘กโ€–โ€–๐ฟ2๎€ป+||๐œ†||๎€œ๐‘…(ฮ›๐‘ž๐‘ค)2||||๎€œ๐‘‘๐‘ฅ+๐‘…ฮ›๐‘ž๐‘คฮ›๐‘ž๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ||||||||๎€œฮ›๐‘‘๐‘ฅ๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐‘ฅ||||+||||๎€œฮ›๐‘‘๐‘ฅ๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ||||+||||๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค๎€ป๐‘ฅ||||+||||๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ป๐‘ฅ||||+||||๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€บ๐‘ข๐‘š๐œ€๐‘ข๐œ€๐‘ฅ๐‘ข๐œ€๐‘ฅ๐‘ฅโˆ’๐‘ข๐‘š๐›ฟ๐‘ข๐›ฟ๐‘ฅ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๎€ป||||๎ƒฐ.๐‘‘๐‘ฅ(3.32) Using the first inequality in Lemma 3.9, we have ||||๎€œ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘ž๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ||||=||||๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘ž๎€ท๐‘ค๐‘”๐‘š+1๎€ธ๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–2๐ป๐‘žโ€–โ€–๐‘”๐‘š+1โ€–โ€–๐ป๐‘ž+1,(3.33) where ๐‘”๐‘š+1=โˆ‘๐‘š+1๐‘—=0๐‘ข๐œ€๐‘š+1โˆ’๐‘—๐‘ข๐‘—๐›ฟ. For the last three terms in (3.32), using Lemmas 3.4 and 3.12, 1/2<๐‘ž<min{1,๐‘ โˆ’1}, ๐‘ >3/2, the algebra property of ๐ป๐‘ 0 with ๐‘ 0>1/2, and (3.23), we have ||||๎€œ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค๎€ธ๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–2๐ป๐‘žโ€–โ€–๐‘ข๐œ€โ€–โ€–๐ป๐‘š+1๐‘ ||||๎€œ,(3.34)๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ธ๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘žโ€–โ€–๐‘ข๐›ฟโ€–โ€–๐ป๐‘ โ€–โ€–๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1โ€–โ€–๐ป๐‘žโ‰ค๐‘โ€–๐‘คโ€–2๐ป๐‘žโ€–โ€–๐‘ข๐›ฟโ€–โ€–๐ป๐‘ ,||||๎€œ(3.35)๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€บ๐‘ข๐‘š๐œ€๐‘ข๐œ€๐‘ฅ๐‘ข๐œ€๐‘ฅ๐‘ฅโˆ’๐‘ข๐‘š๐›ฟ๐‘ข๐›ฟ๐‘ฅ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๎€ป||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘žโ€–โ€–๎€ท๐‘ข๐‘š๐œ€โˆ’๐‘ข๐‘š๐›ฟ๐‘ข๎€ธ๎€ท2๐œ€๐‘ฅ๎€ธ๐‘ฅ+๐‘ข๐‘š๐›ฟ๎€บ๐‘ข2๐œ€๐‘ฅโˆ’๐‘ข2๐›ฟ๐‘ฅ๎€ป๐‘ฅโ€–โ€–๐ป๐‘žโˆ’2โ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ž๎‚€โ€–โ€–๎€ท๐‘ข๐‘š๐œ€โˆ’๐‘ข๐‘š๐›ฟ๐‘ข๎€ธ๎€ท2๐œ€๐‘ฅ๎€ธ๐‘ฅโ€–โ€–๐ป๐‘žโˆ’1+โ€–โ€–๐‘ข๐‘š๐›ฟ๎€บ๐‘ข2๐œ€๐‘ฅโˆ’๐‘ข2๐›ฟ๐‘ฅ๎€ป๐‘ฅโ€–โ€–๐ป๐‘žโˆ’2๎‚โ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ž๎‚€โ€–โ€–๐‘ข๐‘š๐œ€โˆ’๐‘ข๐‘š๐›ฟโ€–โ€–๐ป๐‘žโ€–โ€–๎€ท๐‘ข2๐œ€๐‘ฅ๎€ธ๐‘ฅโ€–โ€–๐ป๐‘žโˆ’1+โ€–โ€–๐‘ข๐‘š๐›ฟโ€–โ€–๐ป๐‘ โ€–โ€–๎€บ๐‘ข2๐œ€๐‘ฅโˆ’๐‘ข2๐›ฟ๐‘ฅ๎€ป๐‘ฅโ€–โ€–๐ป๐‘žโˆ’2๎‚โ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ž๎€ทโ€–๐‘คโ€–๐ป๐‘žโ€–โ€–๐‘”๐‘šโˆ’1โ€–โ€–๐ป๐‘žโ€–๐‘ขโ€–2๐ป๐‘ +โ€–โ€–๐‘ข๐‘š๐›ฟโ€–โ€–๐ป๐‘ โ€–โ€–๐‘ข๐œ€๐‘ฅ+๐‘ข๐›ฟ๐‘ฅโ€–โ€–๐ป๐‘žโ€–๐‘คโ€–๐ป๐‘ž๎€ธโ‰ค๐‘โ€–๐‘คโ€–2๐ป๐‘ž๎€ทโ€–โ€–๐‘”๐‘šโˆ’1โ€–โ€–๐ป๐‘žโ€–๐‘ขโ€–2๐ป๐‘ +โ€–โ€–๐‘ข๐‘š๐›ฟโ€–โ€–๐ป๐‘ โ€–โ€–๐‘ข๐œ€๐‘ฅ+๐‘ข๐›ฟ๐‘ฅโ€–โ€–๐ป๐‘ž๎€ธ.(3.36) Using (3.26), we derive that the inequality ||||๎€œ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ||||=||||๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘žโˆ’2๎€ท๐‘ค๐‘”๐‘š+1๎€ธ๐‘ฅ||||โ€–โ€–๐‘”๐‘‘๐‘ฅโ‰ค๐‘๐‘š+1โ€–โ€–๐ป๐‘žโ€–๐‘คโ€–2๐ป๐‘ž(3.37) holds for some constant ๐‘, where ๐‘”๐‘š+1=โˆ‘๐‘š+1๐‘—=0๐‘ข๐œ€๐‘š+1โˆ’๐‘—๐‘ข๐‘—๐›ฟ. Using the algebra property of ๐ป๐‘ž with ๐‘ž>1/2, ๐‘ž+1<๐‘  and Lemma 3.11, we have โ€–๐‘”๐‘šโ€–๐ป๐‘ž+1โ‰ค๐‘ for ๎‚๐‘กโˆˆ(0,๐‘‡]. Then, it follows from (3.28) and (3.33)โ€“(3.37) that there is a constant ๐‘ depending on ๎‚๐‘‡ such that the estimate ๐‘‘๎€œ๐‘‘๐‘ก๐‘…๎‚ƒ(1โˆ’๐œ€)(ฮ›๐‘ž๐‘ค)2๎€ทฮ›+๐œ€๐‘ž๐‘ค๐‘ฅ๎€ธ2๎‚„๎€ท๐›ฟ๐‘‘๐‘ฅโ‰ค๐‘๐›พโ€–๐‘คโ€–๐ป๐‘ž+โ€–๐‘คโ€–2๐ป๐‘ž๎€ธ(3.38) holds for any ๎‚๐‘กโˆˆ[0,๐‘‡), where ๐›พ=1 if ๐‘ โ‰ฅ3+๐‘ž and ๐›พ=(1+๐‘ โˆ’๐‘ž)/4 if ๐‘ <3+๐‘ž. Integrating (3.38) with respect to ๐‘ก, one obtains the estimate 12โ€–๐‘คโ€–2๐ป๐‘ž=12๎€œ๐‘…(ฮ›๐‘ž๐‘ค)2โ‰ค๎€œ๐‘‘๐‘ฅ๐‘…๎€บ(1โˆ’๐œ€)(ฮ›๐‘ž๐‘ค)2+๐œ€(ฮ›๐‘ž๐‘ค)2๎€ปโ‰ค๎€œ๐‘‘๐‘ฅ๐‘…๎‚ƒ๎€ทฮ›๐‘ž๐‘ค0๎€ธ2๎€ทฮ›+๐œ€๐‘ž๐‘ค0๐‘ฅ๎€ธ2๎‚„๎€œ๐‘‘๐‘ฅ+๐‘๐‘ก0๎€ท๐›ฟ๐›พโ€–๐‘คโ€–๐ป๐‘ž+โ€–๐‘คโ€–2๐ป๐‘ž๎€ธ๐‘‘๐œ.(3.39) Applying the Gronwall inequality and using (3.20) and (3.22) yield โ€–๐‘ขโ€–๐ป๐‘žโ‰ค๐‘๐›ฟ(๐‘ โˆ’๐‘ž)/4๐‘’๐‘๐‘ก+๐›ฟ๐›พ๎€ท๐‘’๐‘๐‘ก๎€ธโˆ’1(3.40) for any ๎‚๐‘กโˆˆ[0,๐‘‡).
Multiplying both sides of (3.29) by ฮ›๐‘ ๐‘คฮ›๐‘  and integrating the resultant equation with respect to ๐‘ฅ, one obtains 12๐‘‘๎€œ๐‘‘๐‘ก๐‘…๎‚ƒ(1โˆ’๐œ€)(ฮ›๐‘ ๐‘ค)2๎€ทฮ›+๐œ€๐‘ ๐‘ค๐‘ฅ๎€ธ2๎‚„๎€œ๐‘‘๐‘ฅ=(๐œ€โˆ’๐›ฟ)๐‘…(ฮ›๐‘ ฮ›๐‘ค)๎€บ๎€ท๐‘ ๐‘ข๐›ฟ๐‘ก๎€ธ+๎€ทฮ›๐‘ ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๐‘ก๎€œ๎€ธ๎€ป๐‘‘๐‘ฅโˆ’๐œ€๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๐‘ค๐‘ก๎€œ๐‘‘๐‘ฅ+(๐›ฟโˆ’๐œ€)๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๐‘ข๐›ฟ๐‘ก๐‘˜๐‘‘๐‘ฅโˆ’๎€œ๐‘š+1๐‘…(ฮ›๐‘ ๐‘ค)ฮ›๐‘ ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐‘ฅโˆ’1๐‘‘๐‘ฅ๎€œ๐‘š+2๐‘…(ฮ›๐‘ ๐‘ค)ฮ›๐‘ ๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ๎€œ๐‘‘๐‘ฅโˆ’๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅโˆ’๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค๎€ป๐‘ฅ๎€œ๐‘‘๐‘ฅโˆ’๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ป๐‘ฅ+๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€บ๐‘ข๐‘š๐œ€๐‘ข๐œ€๐‘ฅ๐‘ข๐œ€๐‘ฅ๐‘ฅโˆ’๐‘ข๐‘š๐›ฟ๐‘ข๐›ฟ๐‘ฅ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๎€ป๎€œ๐‘‘๐‘ฅ+๐œ†๐‘…(ฮ›๐‘ ๐‘ค)2๐‘‘๐‘ฅ.(3.41) From Lemma 3.12, we have ||||๎€œ๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘3โ€–โ€–๐‘”๐‘š+1โ€–โ€–๐ป๐‘ โ€–๐‘คโ€–2๐ป๐‘ .(3.42) From Lemma 3.10, it holds that ||||๎€œ๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ ๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ||||๎€ท๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ โ€–๐‘คโ€–๐ป๐‘žโ€–โ€–๐‘ข๐›ฟโ€–โ€–๐ป๐‘ +1+โ€–๐‘คโ€–2๐ป๐‘ ๎€ธ.(3.43) Using the Cauchy-Schwartz inequality and the algebra property of ๐ป๐‘ 0 with ๐‘ 0>1/2, for ๐‘ >3/2, we have ||||๎€œ๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค๎€ป๐‘ฅ||||=||||๎€œ๐‘‘๐‘ฅ๐‘…ฮ›๐‘ž๐‘คฮ›๐‘ โˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค๎€ป๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘โ€–ฮ›๐‘ ๐‘คโ€–๐ฟ2โ€–โ€–ฮ›๐‘ โˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค๎€ป๐‘ฅโ€–โ€–๐ฟ2โ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘žโ€–โ€–๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘คโ€–โ€–๐ป๐‘ โˆ’1โ€–โ€–๐‘ขโ‰ค๐‘๐œ€๐ป๐‘š+1๐‘ โ€–โ€–โ€–๐‘คโ€–2๐ป๐‘ ,||||๎€œ(3.44)๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ป๐‘ฅ||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ โ€–โ€–ฮ›๐‘ โˆ’2๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ป๐‘ฅโ€–โ€–๐ฟ2โ€–โ€–๐‘ขโ‰ค๐‘๐›ฟโ€–โ€–๐ป๐‘ โ€–โ€–๐‘”๐‘šโ€–โ€–๐ป๐‘ โ€–๐‘คโ€–2๐ป๐‘ ,||||๎€œ(3.45)๐‘…ฮ›๐‘ ๐‘คฮ›๐‘ โˆ’2๎€บ๐‘ข๐‘š๐œ€๐‘ข๐œ€๐‘ฅ๐‘ข๐œ€๐‘ฅ๐‘ฅโˆ’๐‘ข๐‘š๐›ฟ๐‘ข๐›ฟ๐‘ฅ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๎€ป||||๐‘‘๐‘ฅโ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ ๎‚€โ€–โ€–๎€ท๐‘ข๐‘š๐œ€โˆ’๐‘ข๐‘š๐›ฟ๐‘ข๎€ธ๎€ท2๐œ€๐‘ฅ๎€ธ๐‘ฅโ€–โ€–๐ป๐‘ โˆ’2+โ€–โ€–๐‘ข๐‘š๐›ฟ๎€บ๐‘ข2๐œ€๐‘ฅโˆ’๐‘ข2๐›ฟ๐‘ฅ๎€ป๐‘ฅโ€–โ€–๐ป๐‘ โˆ’2๎‚โ‰ค๐‘โ€–๐‘คโ€–๐ป๐‘ ๎‚€โ€–โ€–๐‘ข๐‘š๐œ€โˆ’๐‘ข๐‘š๐›ฟโ€–โ€–๐ป๐‘ โ€–โ€–๎€ท๐‘ข2๐œ€๐‘ฅ๎€ธ๐‘ฅโ€–โ€–๐ป๐‘ โˆ’2+โ€–โ€–๐‘ข๐‘š๐›ฟโ€–โ€–๐ป๐‘ โ€–โ€–๎€บ๐‘ข2๐œ€๐‘ฅโˆ’๐‘ข2๐›ฟ๐‘ฅ๎€ป๐‘ฅโ€–โ€–๐ป๐‘ โˆ’2๎‚โ‰ค๐‘โ€–๐‘คโ€–2๐ป๐‘ ,(3.46) in which we have used Lemma 3.4 and the bounded property of โ€–๐‘ข๐œ€โ€–๐ป๐‘  and โ€–๐‘ข๐›ฟโ€–๐ป๐‘  (see Remark 3.7). It follows from (3.41)โ€“(3.46) and the inequalities (3.28) and (3.40) that there exists a constant ๐‘ depending on ๐‘š such that ๐‘‘๎€œ๐‘‘๐‘ก๐‘…๎‚ƒ(1โˆ’๐œ€)(ฮ›๐‘ ๐‘ค)2๎€ทฮ›+๐œ€๐‘ ๐‘ค๐‘ฅ๎€ธ2๎‚„๎€ทโ€–โ€–๐‘ข๐‘‘๐‘ฅโ‰ค2๐›ฟ๐›ฟ๐‘กโ€–โ€–๐ป๐‘ +โ€–โ€–๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๐‘กโ€–โ€–๐ป๐‘ +โ€–โ€–ฮ›๐‘ โˆ’2๐‘ค๐‘กโ€–โ€–๐ฟ2+โ€–โ€–ฮ›๐‘ โˆ’2๐‘ข๐›ฟ๐‘กโ€–โ€–๎€ธโ€–๐‘คโ€–๐ป๐‘ ๎€ท+๐‘โ€–๐‘คโ€–2๐ป๐‘ +โ€–๐‘คโ€–๐ป๐‘žโ€–๐‘คโ€–๐ป๐‘ โ€–โ€–๐‘ข๐›ฟโ€–โ€–๐ป๐‘ +1๎€ธ๎€ท๐›ฟโ‰ค๐‘๐›พ1โ€–๐‘คโ€–๐ป๐‘ +โ€–๐‘คโ€–2๐ป๐‘ ๎€ธ,(3.47) where ๐›พ1=min(1/4,(๐‘ โˆ’๐‘žโˆ’1)/4)>0. Integrating (3.47) with respect to ๐‘ก leads to the estimate 12โ€–๐‘คโ€–2๐ป๐‘ โ‰ค๎€œ๐‘…๎‚ƒ(1โˆ’๐œ€)(ฮ›๐‘ ๐‘ค)2๎€ทฮ›+๐œ€๐‘ ๐‘ค๐‘ฅ๎€ธ2๎‚„โ‰ค๎€œ๐‘‘๐‘ฅ๐‘…๎‚ƒ๎€ทฮ›๐‘ ๐‘ค0๎€ธ2๎€ทฮ›+๐œ€๐‘ ๐‘ค0๐‘ฅ๎€ธ2๎‚„๎€œ๐‘‘๐‘ฅ+๐‘๐‘ก0๎€ท๐›ฟ๐›พ1โ€–๐‘คโ€–๐ป๐‘ +โ€–๐‘คโ€–2๐ป๐‘ ๎€ธ๐‘‘๐œ.(3.48) It follows from the Gronwall inequality and (3.48) that โ€–๐‘คโ€–๐ป๐‘ โ‰ค๎‚ต2๎€œ๐‘…๎‚ƒ๎€ทฮ›๐‘ ๐‘ค0๎€ธ2๎€ทฮ›+๐œ€๐‘ ๐‘ค0๐‘ฅ๎€ธ2๎‚„๎‚ถ๐‘‘๐‘ฅ1/2๐‘’๐‘๐‘ก+๐›ฟ๐›พ1๎€ท๐‘’๐‘๐‘ก๎€ธโˆ’1โ‰ค๐‘1๎€ทโ€–โ€–๐‘ค0โ€–โ€–๐ป๐‘ +๐›ฟ3/4๎€ธ๐‘’๐‘๐‘ก+๐›ฟ๐›พ1๎€ท๐‘’๐‘๐‘ก๎€ธ,โˆ’1(3.49) where ๐‘1 is independent of ๐œ€ and ๐›ฟ.
Then, (3.22) and the above inequality show that โ€–๐‘คโ€–๐ป๐‘ โŸถ0as๐œ€โŸถ0,๐›ฟโŸถ0.(3.50) Next, we consider the convergence of the sequence {๐‘ข๐œ€๐‘ก}. Multiplying both sides of (3.29) by ฮ›๐‘ โˆ’1๐‘ค๐‘กฮ›๐‘ โˆ’1 and integrating the resultant equation with respect to ๐‘ฅ, we obtain (โ€–โ€–๐‘ค1โˆ’๐œ€)๐‘กโ€–โ€–2๐ป๐‘ โˆ’1+1๎€œ๐‘š+2๐‘…๎€ทฮ›๐‘ โˆ’1๐‘ค๐‘ก๎€ธฮ›๐‘ โˆ’1๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธ๐‘ฅ+๎€œ๐‘‘๐‘ฅ๐‘…๎€บ๎€ทฮ›โˆ’๐œ€๐‘ โˆ’1๐‘ค๐‘กฮ›๎€ธ๎€ท๐‘ โˆ’1๐‘ค๐‘ฅ๐‘ฅ๐‘ก๎€ธ๎€ทฮ›+(๐›ฟโˆ’๐œ€)๐‘ โˆ’1๐‘ค๐‘ก๎€ธฮ›๐‘ โˆ’1๎€ท๐‘ข๐›ฟ๐‘ก+๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๐‘ก=๎€œ๎€ธ๎€ป๐‘‘๐‘ฅ๐‘…๎€ทฮ›๐‘ โˆ’1๐‘ค๐‘ก๎€ธฮ›๐‘ โˆ’3๎‚ƒโˆ’๐œ€๐‘ค๐‘ก+(๐›ฟโˆ’๐œ€)๐‘ข๐›ฟ๐‘กโˆ’๐‘˜๐œ•๐‘š+1๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐›ฟ๐‘š+1๎€ธโˆ’๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+2โˆ’๐‘ข๐›ฟ๐‘š+2๎€ธโˆ’๐œ•๐‘ฅ๎€บ๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ค+๐œ•๐‘ฅ๎€ท๐‘ข๐œ€๐‘š+1โˆ’๐‘ข๐œ€๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ข๐›ฟ๎€ป+๎€บ๐‘ข๐‘š๐œ€๐‘ข๐œ€๐‘ฅ๐‘ข๐œ€๐‘ฅ๐‘ฅโˆ’๐‘ข๐‘š๐›ฟ๐‘ข๐›ฟ๐‘ฅ๐‘ข๐›ฟ๐‘ฅ๐‘ฅ๎€ป๎‚„๎€œ๐‘‘๐‘ฅ+๐œ†๐‘…ฮ›๐‘ โˆ’1๐‘ค๐‘กฮ›๐‘ โˆ’1๐‘ค๐‘‘๐‘ฅ.(3.51)
It follows from inequalities (3.28) and the Schwartz inequality that there is a constant ๐‘ depending on ๎‚๐‘‡ and ๐‘š such that โ€–โ€–๐‘ค(1โˆ’๐œ€)๐‘กโ€–โ€–2๐ป๐‘ โˆ’1๎€ท๐›ฟโ‰ค๐‘1/2+โ€–๐‘คโ€–๐ป๐‘ +โ€–๐‘คโ€–๐‘ โˆ’1๎€ธโ€–โ€–๐‘ค๐‘กโ€–โ€–๐ป๐‘ โˆ’1โ€–โ€–๐‘ค+๐œ€๐‘กโ€–โ€–2๐ป๐‘ โˆ’1(3.52) Hence 12โ€–โ€–๐‘ค๐‘กโ€–โ€–2๐ป๐‘ โˆ’1โ€–โ€–๐‘คโ‰ค(1โˆ’2๐œ€)๐‘กโ€–โ€–2๐ป๐‘ โˆ’1๎€ท๐›ฟโ‰ค๐‘1/2+โ€–๐‘คโ€–๐ป๐‘ +โ€–๐‘คโ€–๐ป๐‘ โˆ’1๎€ธโ€–โ€–๐‘ค๐‘กโ€–โ€–๐ป๐‘ โˆ’1,(3.53) which results in 12โ€–โ€–๐‘ค๐‘กโ€–โ€–๐ป๐‘ โˆ’1๎€ท๐›ฟโ‰ค๐‘1/2+โ€–๐‘คโ€–๐ป๐‘ +โ€–๐‘คโ€–๐ป๐‘ โˆ’1๎€ธ.(3.54)
It follows from (3.40) and (3.50) that ๐‘ค๐‘กโ†’0 as ๐œ€, ๐›ฟโ†’0 in the ๐ป๐‘ โˆ’1 norm. This implies that ๐‘ข๐œ€ is a Cauchy sequence in the spaces ๐ถ([0,๐‘‡);๐ป๐‘ (๐‘…)) and ๐ถ([0,๐‘‡);๐ป๐‘ โˆ’1(๐‘…)), respectively. The proof is completed.

4. Proof of the Main Result

We consider the problem (1โˆ’๐œ€)๐‘ข๐‘กโˆ’๐œ€๐‘ข๐‘ก๐‘ฅ๐‘ฅ=๎€ท1โˆ’๐œ•2๐‘ฅ๎€ธโˆ’1๎‚ƒโˆ’๐‘˜๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎‚„+๐œ†๐‘ข,๐‘ข(0,๐‘ฅ)=๐‘ข๐œ€0(๐‘ฅ).(4.1) Letting ๐‘ข(๐‘ก,๐‘ฅ) be the limit of the sequence ๐‘ข๐œ€ and taking the limit in problem (4.1) as ๐œ€โ†’0, from Lemma 3.13, we know that ๐‘ข is a solution of the problem ๐‘ข๐‘ก=๎€ท1โˆ’๐œ•2๐‘ฅ๎€ธโˆ’1๎‚ƒโˆ’๐‘˜๎€ท๐‘ข๐‘š+1๐‘š+1๎€ธ๐‘ฅโˆ’๐‘š+3๎€ท๐‘ข๐‘š+2๐‘š+2๎€ธ๐‘ฅ+1๐œ•๐‘š+23๐‘ฅ๎€ท๐‘ข๐‘š+2๎€ธโˆ’(๐‘š+1)๐œ•๐‘ฅ๎€ท๐‘ข๐‘š๐‘ข2๐‘ฅ๎€ธ+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๎‚„+๐œ†๐‘ข,๐‘ข(0,๐‘ฅ)=๐‘ข0(๐‘ฅ),(4.2) and hence ๐‘ข is a solution of problem (4.2) in the sense of distribution. In particular, if ๐‘ โ‰ฅ4, ๐‘ข is also a classical solution. Let ๐‘ข and ๐‘ฃ be two solutions of (4.2) corresponding to the same initial value ๐‘ข0 such that ๐‘ข, ๐‘ฃโˆˆ๐ถ([0,๐‘‡);๐ป๐‘ (๐‘…)). Then, ๐‘ค=๐‘ขโˆ’๐‘ฃ satisfies the Cauchy problem ๐‘ค๐‘ก=๎€ท1โˆ’๐œ•2๐‘ฅ๎€ธโˆ’1๎‚†๐œ•๐‘ฅ๎‚ƒโˆ’๐‘˜๐‘š+1๐‘ค๐‘”๐‘šโˆ’๐‘š+3๐‘š+2๐‘ค๐‘”๐‘š+1+1๐œ•๐‘š+22๐‘ฅ๎€ท๐‘ค๐‘”๐‘š+1๎€ธโˆ’๐œ•๐‘ฅ๎€ท๐‘ข๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘คโˆ’๐œ•๐‘ฅ๎€ท๐‘ข๐‘š+1โˆ’๐‘ฃ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ฃ๎‚„+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅโˆ’๐‘ฃ๐‘š๐‘ฃ๐‘ฅ๐‘ฃ๐‘ฅ๐‘ฅ๎‚‡+๐œ†๐‘ค,๐‘ค(0,๐‘ฅ)=0.(4.3) For any 1/2<๐‘ž<min{1,๐‘ โˆ’1}, applying the operator ฮ›๐‘ž๐‘คฮ›๐‘ž to both sides of (4.3) and integrating the resultant equation with respect to ๐‘ฅ, we obtain the equality 12๐‘‘๐‘‘๐‘กโ€–๐‘คโ€–2๐ป๐‘ž=๎€œ๐‘…(ฮ›๐‘ž๐‘ค)ฮ›๐‘žโˆ’2๎‚†๐œ•๐‘ฅ๎‚ƒโˆ’๐‘˜๐‘š+1๐‘ค๐‘”๐‘šโˆ’๐‘š+3๐‘š+2๐‘ค๐‘”๐‘š+1+1๐œ•๐‘š+22๐‘ฅ๎€ท๐‘ค๐‘”๐‘š+1๎€ธโˆ’๐œ•๐‘ฅ๎€ท๐‘ข๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘คโˆ’๐œ•๐‘ฅ๎€ท๐‘ข๐‘š+1โˆ’๐‘ฃ๐‘š+1๎€ธ๐œ•๐‘ฅ๐‘ฃ๎‚„+๐‘ข๐‘š๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅโˆ’๐‘ฃ๐‘š๐‘ฃ๐‘ฅ๐‘ฃ๐‘ฅ๐‘ฅ๎‚‡||๐œ†||๐‘‘๐‘ฅ+โ€–๐‘คโ€–2๐ป๐‘ž.(4.4) By the similar estimates presented in Lemma 3.13, we have ๐‘‘๐‘‘๐‘กโ€–๐‘คโ€–2๐ป๐‘žโ‰คฬƒ๐‘โ€–๐‘คโ€–2๐ป๐‘ž.(4.5) Using the Gronwall inequality leads to the conclusion that โ€–๐‘คโ€–๐ป๐‘žโ‰ค0ร—๐‘’ฬƒ๐‘๐‘ก=0(4.6) for ๎‚๐‘กโˆˆ[0,๐‘‡). This completes the proof.

Acknowledgments

Thanks are given to the referees whose suggestions were very helpful in improving the paper. This work is supported by the Fundamental Research Funds for the Central Universities (JBK120504).