About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 214897, 12 pages
http://dx.doi.org/10.1155/2012/214897
Research Article

Nonlinear Numerical Investigation on Higher Harmonics at Lee Side of a Submerged Bar

1State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
2Waterway and Sediment Engineering Key Laboratory of Ministry of Transport, Nanjing Hydraulic Research Insititute, Nanjing 210029, China

Received 1 January 2012; Accepted 25 January 2012

Academic Editor: Muhammad Aslam Noor

Copyright © 2012 D. Ning et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Beji and J. A. Battjes, “Experimental investigation of wave propagation over a bar,” Coastal Engineering, vol. 19, no. 1-2, pp. 151–162, 1993. View at Publisher · View at Google Scholar
  2. H. R. Luth, R. Klopman, and N. Kitou, “Kinematics of waves breaking partially on an offshore bar; LDV measurements of waves with and without a net onshore current,” Tech. Rep. H-1573, Delft Hydraulics, 1994.
  3. D. S. Jeng, C. Schacht, and C. Lemckert, “Experimental study on ocean waves propagating over a submerged breakwater in front of a vertical seawall,” Ocean Engineering, vol. 32, no. 17-18, pp. 2231–2240, 2005. View at Publisher · View at Google Scholar
  4. Y. S. Cho, J. I. Lee, and Y. T. Kim, “Experimental study of strong reflection of regular water waves over submerged breakwaters in tandem,” Ocean Engineering, vol. 31, no. 10, pp. 1325–1335, 2004. View at Publisher · View at Google Scholar
  5. C. Rambabu and J. S. Mani, “Numerical prediction of performance of submerged breakwaters,” Ocean Engineering, vol. 32, no. 10, pp. 1235–1246, 2005. View at Publisher · View at Google Scholar
  6. P. A. Madsen, R. Murray, and O. R. Sφrensen, “A new form of Boussinesq equaitons with improved linear dispersion characteristics,” Coastal Engineering, vol. 15, no. 4, pp. 371–388, 1991. View at Publisher · View at Google Scholar
  7. P. A. Madsen and O. R. Sφrensen, “Bound waves and triad interactions in shallow water,” Ocean Engineering, vol. 20, no. 4, pp. 359–388, 1993. View at Publisher · View at Google Scholar
  8. A. P. Engsig-Karup, J. S. Hesthaven, H. B. Bingham, and T. Warburton, “DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations,” Coastal Engineering, vol. 55, no. 3, pp. 197–208, 2008. View at Publisher · View at Google Scholar
  9. K. Z. Fang and Z. L. Zou, “Boussinesq-type equations for nonlinear evolution of wave trains,” Wave Motion, vol. 47, no. 1, pp. 12–32, 2010. View at Publisher · View at Google Scholar
  10. J. Grue, “Nonlinear water waves at a submerged obstacle or bottom topography,” Journal of Fluid Mechanics, vol. 244, pp. 455–476, 1992. View at Publisher · View at Google Scholar
  11. J. Brossard and M. Chagdali, “Experimental investigation of the harmonic generation by waves over a submerged plate,” Coastal Engineering, vol. 42, no. 4, pp. 277–290, 2001. View at Publisher · View at Google Scholar
  12. C. R. Liu, Z. H. Huang, and S. K. Tan, “Nonlinear scattering of non-breaking waves by a submerged horizontal plate: experiments and simulations,” Ocean Engineering, vol. 36, no. 17-18, pp. 1332–1345, 2009. View at Publisher · View at Google Scholar
  13. D. Z. Ning, B. Teng, R. Eatock Taylor, and J. Zang, “Nonlinear numerical simulation of regular and focused waves in an infinite water depth,” Ocean Engineering, vol. 35, no. 8-9, pp. 887–899, 2008. View at Publisher · View at Google Scholar
  14. M. Brorsen and J. Larsen, “Source generation of nonlinear gravity waves with the boundary integral equation method,” Coastal Engineering, vol. 11, no. 2, pp. 93–113, 1987. View at Publisher · View at Google Scholar
  15. J. N. Newman, “The approximation of free-surface Green functions,” in Wave Asymptotics, P. A. Martin and G. R. Whickham, Eds., pp. 107–142, Cambridge University Press, Cambridge, UK, 1992. View at Zentralblatt MATH
  16. B. Teng, Y. Gou, and D. Z. Ning, “A higher order BEM for wave-current action on structures—direct computation of free-term coefficient and CPV integrals,” China Ocean Engineering, vol. 20, no. 3, pp. 395–410, 2006.
  17. D. Z. Ning and B. Teng, “Numerical simulation of fully nonlinear irregular wave tank in three dimension,” International Journal for Numerical Methods in Fluids, vol. 53, no. 12, pp. 1847–1862, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH