About this Journal Submit a Manuscript Table of Contents
RETRACTED
This article has been retracted as it is essentially identical in title and technical content with a published paper in Journal of Nonlinear Analysis and Optimization published in 2011. The article was submitted on the same day in two different journals; Abstract and Applied Analysis and Journal of Nonlinear Analysis and Optimization, without the knowledge of Dr. Dumitru Baleanu.
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 219640, 9 pages
http://dx.doi.org/10.1155/2012/219640
Research Article

The Stability of Gauss Model Having One-Prey and Two-Predators

1Department of Mathematics, Razi University, Kermanshah 67149, Iran
2Department of Mathematics, Ilam University, Ilam 69315-516, Iran
3Department of Mathematics and Computer Sciences, Cankaya University, 06530 Ankara, Turkey
4Institute of Space Sciences, Bucharest, Magurele, Romania

Received 22 August 2011; Revised 10 November 2011; Accepted 11 November 2011

Academic Editor: Muhammad Aslam Noor

Copyright © 2012 A. Farajzadeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Burton, Volterra Integral and Differential Equations, vol. 167, Academic Press, Orlando, Fla, USA, 1983. View at Zentralblatt MATH
  2. E. M. Elabbasy and S. H. Saker, “Dynamics of a class of non-autonomous systems of two non-interacting preys with common predator,” Journal of Applied Mathematics & Computing, vol. 17, no. 1-2, pp. 195–215, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. S. Gakkhar and B. Singh, “The dynamics of a food web consisting of two preys and a harvesting predator,” Chaos, Solitons and Fractals, vol. 34, no. 4, pp. 1346–1356, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. T. K. Kar and K. S. Chaudhuri, “Harvesting in a two-prey one-predator fishery: a bioeconomic model,” The Australian & New Zealand Industrial and Applied Mathematics Journal, vol. 45, no. 3, pp. 443–456, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. S. Kumar, S. K. Srivastava, and P. Chingakham, “Hopf bifurcation and stability analysis in a harvested one-predator—two-prey model,” Applied Mathematics and Computation, vol. 129, no. 1, pp. 107–118, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. B. Lisena, “Asymptotic behaviour in periodic three species predator-prey systems,” Annali di Matematica Pura ed Applicata, vol. 186, no. 1, pp. 85–98, 2007. View at Publisher · View at Google Scholar
  7. G. P. Samanta, D. Manna, and A. Maiti, “Bioeconomic modelling of a three-species fishery with switching effect,” Journal of Applied Mathematics & Computing, vol. 12, no. 1-2, pp. 219–231, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. X. Song and Y. Li, “Dynamic complexities of a Holling II two-prey one-predator system with impulsive effect,” Chaos, Solitons and Fractals, vol. 33, no. 2, pp. 463–478, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH