About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 251715, 12 pages
http://dx.doi.org/10.1155/2012/251715
Research Article

Dynamic Properties of the Fractional-Order Logistic Equation of Complex Variables

1Faculty of Science, Alexandria University, Alexandria 21526, Egypt
2Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3Mathematics Department, Faculty of Science, Damietta University, P.O. Box 34517, New Damietta, Egypt

Received 13 June 2012; Accepted 17 July 2012

Academic Editor: Juan J. Trujillo

Copyright © 2012 A. M. A. El-Sayed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Gibbon and M. J. McGuinness, “The real and complex Lorenz equations in rotating fluids and lasers,” Physica D, vol. 5, no. 1, pp. 108–122, 1982. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. G. M. Mahmoud, S. A. Aly, and A. A. Farghaly, “On chaos synchronization of a complex two coupled dynamos system,” Chaos, Solitons and Fractals, vol. 33, no. 1, pp. 178–187, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. G. M. Mahmoud, S. A. Aly, and M. A. AL-Kashif, “Dynamical properties and chaos synchronization of a new chaotic complex nonlinear system,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 171–181, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. G. M. Mahmoud, T. Bountis, G. M. AbdEl-Latif, and E. E. Mahmoud, “Chaos synchronization of two different chaotic complex Chen and Lü systems,” Nonlinear Dynamics, vol. 55, no. 1-2, pp. 43–53, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. C. Z. Ning and H. Haken, “Detuned lasers and the complex Lorenz equations: subcritical and supercritical Hopf bifurcations,” Physical Review A, vol. 41, no. 7, pp. 3826–3837, 1990.
  6. A. Rauh, L. Hannibal, and N. B. Abraham, “Global stability properties of the complex Lorenz model,” Physica D, vol. 99, no. 1, pp. 45–58, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. Y. Xu, W. Xu, and G.M. Mahmoud, “On a complex beam-beam interaction model with random forcing,” Physica A, vol. 336, no. 3-4, pp. 347–360, 2004. View at Publisher · View at Google Scholar
  8. Y. Xu, W. Xu, and G.M. Mahmoud, “On a complex Duffing system with random excitation,” Chaos, Solitons and Fractals, vol. 35, no. 1, pp. 126–132, 2008. View at Publisher · View at Google Scholar
  9. E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542–553, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. A. M. A. El-Sayed, F. M. Gaafar, and H. H. G. Hashem, “On the maximal and minimal solutions of arbitrary-orders nonlinear functional integral and differential equations,” Mathematical Sciences Research Journal, vol. 8, no. 11, pp. 336–348, 2004. View at Zentralblatt MATH
  11. A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “On the fractional-order logistic equation,” Applied Mathematics Letters, vol. 20, no. 7, pp. 817–823, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. R. Gorenflo and F. Mainardi, “Fractional Calculus: Integral and Differential Equations of Fractional Order,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., pp. 223–276, Springer, Wien, Austria, 1997.
  13. I. Podlubny and A. M. A. El-Sayed, On Two Definitions of Fractional Calculus, Slovak Academy of Science-Institute of Experimental Physics, 1996.
  14. I. Podlubny, Fractional Differential Equations, Academic Press Inc., San Diego, Calif, USA, 1999.
  15. Y. Suansook and K. Paithoonwattanakij, “Chaos in fractional order logistic model,” in Proceedings of the International Conference on Signal Processing Systems, pp. 297–301, May 2009.
  16. I. Petras, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation, Nonlinear Physical Science, Springer, New York, NY, USA, 2011.
  17. R. F. Curtain and A. J. Pritchard, Functional Analysis in Modern Applied Mathematics, Academic Press, London, UK, 1977.
  18. A. M. A. El-Sayed and Sh. A. Abd El-Salam, “On the stability of a fractional-order differential equation with nonlocal initial condition,” Electronic Journal of Qualitative Theory of Differential Equations, no. 29, pp. 1–8, 2008. View at Zentralblatt MATH
  19. A. M. A. El-Sayed, “On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications,” Alexandria Journal of Mathematics, vol. 1, no. 1, 2010.
  20. E. Ahmed, A. M. A. El-Sayed, E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for the fractional replicator equation,” International Journal of Modern Physics C, vol. 16, no. 7, pp. 1017–1025, 2005.
  21. E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems,” Physics Letters A, vol. 358, no. 1, pp. 1–4, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. H. A. El-Saka, E. Ahmed, M. I. Shehata, and A. M. A. El-Sayed, “On stability, persistence, and Hopf bifurcation in fractional order dynamical systems,” Nonlinear Dynamics, vol. 56, no. 1-2, pp. 121–126, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. D. Matignon, “Stability results for fractional differential equations with applications to control processing,” in Proceedings of the Computational Engineering in Systems and Application multiconference, vol. 2, pp. 963–968, Lille, France, 1996.
  24. K. Diethelm, The Analysis of Fractional Differential Equations: An Application- Oriented Exposition Using Differential Operators of Caputo Type (Lecture Notes in Mathematics), Springer-Verlag, Berlin, Germany, 2010. View at Publisher · View at Google Scholar
  25. A. M. A. El-Sayed, A. E. M. El-Mesiry, and H. A. A. El-Saka, “Numerical solution for multi-term fractional (arbitrary) orders differential equations,” Computational & Applied Mathematics, vol. 23, no. 1, pp. 33–54, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. A. E. M. El-Mesiry, A. M. A. El-Sayed, and H. A. A. El-Saka, “Numerical methods for multi-term fractional (arbitrary) orders differential equations,” Applied Mathematics and Computation, vol. 160, no. 3, pp. 683–699, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH