About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 253890, 14 pages
http://dx.doi.org/10.1155/2012/253890
Research Article

Enhanced Multistage Differential Transform Method: Application to the Population Models

1Department of Mathematics, Kyungpook National University, Daegu 702-701, Republic of Korea
2Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 689-798, Republic of Korea

Received 25 March 2012; Accepted 1 April 2012

Academic Editor: Shaher Momani

Copyright © 2012 Younghae Do and Bongsoo Jang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Kangalgil and F. Ayaz, “Solitary wave solutions for the KdV and mKdV equations by differential transform method,” Chaos, Solitons and Fractals, vol. 41, no. 1, pp. 464–472, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. A. S. V. Ravi Kanth and K. Aruna, “Differential transform method for solving linear and non-linear systems of partial differential equations,” Physics Letters. A, vol. 372, no. 46, pp. 6896–6898, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. I. H. A. Hassan, “Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems,” Chaos, Solitons and Fractals, vol. 36, no. 1, pp. 53–65, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. F. Ayaz, “Solutions of the system of differential equations by differential transform method,” Applied Mathematics and Computation, vol. 147, no. 2, pp. 547–567, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. I. H. A. Hassan, “Different applications for the differential transformation in the differential equations,” Applied Mathematics and Computation, vol. 129, no. 2-3, pp. 183–201, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. M. J. Jang, C. L. Chen, and Y. C. Liu, “Two-dimensional differential transform for partial differential equations,” Applied Mathematics and Computation, vol. 121, no. 2-3, pp. 261–270, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. B. Jang, “Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method,” Journal of Computational and Applied Mathematics, vol. 233, no. 2, pp. 224–230, 2009. View at Publisher · View at Google Scholar
  8. B. Jang, “Solving linear and nonlinear initial value problems by the projected differential transform method,” Computer Physics Communications, vol. 181, no. 5, pp. 848–854, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. H. Koçak and A. Yıldırım, “An efficient algorithm for solving nonlinear age-structured population models by combining homotopy perturbation and Padé techniques,” International Journal of Computer Mathematics, vol. 88, no. 3, pp. 491–500, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. A. Yildirim and Y. Cherruault, “Analytical approximate solution of a SIR epidemic model with constant vaccination strategy by homotopy perturbation method,” Kybernetes, vol. 38, no. 9, pp. 1566–1575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gökdoğan, M. Merdan, and A. Yildirim, “A multistage differential transformation method for approximate solution of Hantavirus infection model,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar
  12. A. Gökdoǧan, M. Merdan, and A. Yildirim, “Adaptive multi-step differential transformation method to solving nonlinear differential equations,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 761–769, 2012. View at Publisher · View at Google Scholar
  13. Z. M. Odibat, C. Bertelle, M. A. Aziz-Alaoui, and G. H. E. Duchamp, “A multi-step differential transform method and application to non-chaotic or chaotic systems,” Computers & Mathematics with Applications, vol. 59, no. 4, pp. 1462–1472, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. V. S. Ertürk, Z. M. Odibat, and S. Momani, “An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 996–1002, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. V. S. Erturk, G. Zaman, and S. Momani, “A numeric-analytic method for approximating a giving up smoking model containing fractional derivatives,” Computers & Mathematics with Applications. In press. View at Publisher · View at Google Scholar
  16. V.S. Erturk, G. Zaman, and S. Momani, “Application of multi-step differential transform method for the analytical and numerical solutions of the density dependent Nagumo telegraph equation,” Romanian Journal of Physics. In press.
  17. S. M. Goh, M. S. M. Noorani, and I. Hashim, “Prescribing a multistage analytical method to a prey-predator dynamical system,” Physics Letters, Section A, vol. 373, no. 1, pp. 107–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Moghadas, M. E. Alexander, and B. D. Corbett, “A non-standard numerical scheme for a generalized Gause-type predator-prey model,” Physica D, vol. 188, no. 1-2, pp. 134–151, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. B. Batiha, M. S. M. Noorani, I. Hashim, and E. S. Ismail, “The multistage variational iteration method for a class of nonlinear system of ODEs,” Physica Scripta, vol. 76, no. 4, pp. 388–392, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. B. Batiha, M. S. M. Noorani, and I. Hashim, “Variational iteration method for solving multispecies Lotka-Volterra equations,” Computers & Mathematics with Applications, vol. 54, no. 7-8, pp. 903–909, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH