About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 267108, 12 pages
http://dx.doi.org/10.1155/2012/267108
Research Article

Existence Results for Solutions of Nonlinear Fractional Differential Equations

1Department of Statistics, Gaziosmanpasa University, 60250 Tokat, Turkey
2Department of Primary Mathematics Education, Mevlana University, 34528 Konya, Turkey

Received 15 February 2012; Accepted 1 April 2012

Academic Editor: Allaberen Ashyralyev

Copyright © 2012 Ali Yakar and Mehmet Emir Koksal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Caputo, “Linear models of dissipation whose Q is almost independent,” Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529–539, 1967.
  2. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993. View at Zentralblatt MATH
  3. R. Metzler, W. Schick, H. G. Kilian, and T. F. Nonnenmacher, “Relaxation in filled polymers: a fractional calculus approach,” The Journal of Chemical Physics, vol. 103, no. 16, pp. 7180–7186, 1995.
  4. R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. O. P. Agrawal, “Fractional variational calculus in terms of Riesz fractional derivatives,” Journal of Physics, vol. 40, no. 24, pp. 6287–6303, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. S.E. Hamamci, “Stabilization using fractional-order PI and PID controllers,” Nonlinear Dynamics, vol. 51, no. 1-2, pp. 329–343, 2008. View at Publisher · View at Google Scholar
  7. N. Ozdemir, O. P. Agrawal, D. Karadeniz, and B. B. Iskender, “Fractional optimal control problem of an axis-symmetric diffusion-wave propagation,” Physica Scripta, vol. 136, Article ID 014024, pp. 1–5, 2009.
  8. S. E. Hamamci and M. Koksal, “Calculation of all stabilizing fractional-order PD controllers for integrating time delay systems,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1621–1629, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. A. Ashyralyev, “A note on fractional derivatives and fractional powers of operators,” Journal of Mathematical Analysis and Applications, vol. 357, no. 1, pp. 232–236, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. S. D. Lin and H. M. Srivastava, “Some miscellaneous properties and applications of certain operators of fractional calculus,” Taiwanese Journal of Mathematics, vol. 14, no. 6, pp. 2469–2495, 2010. View at Zentralblatt MATH
  11. Z. Tomovski, R. Hilfer, and H. M. Srivastava, “Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions,” Integral Transforms and Special Functions, vol. 21, no. 11, pp. 797–814, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. V. Daftardar-Gejji and A. Babakhani, “Analysis of a system of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 293, no. 2, pp. 511–522, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. A. A. Kilbas, H. M. Srivatsava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netharland, 2006.
  14. V. Lakshmikantham and A. S. Vatsala, “General uniqueness and monotone iterative technique for fractional differential equations,” Applied Mathematics Letters, vol. 21, no. 8, pp. 828–834, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. V. Lakshmikantham and J. V. Devi, “Theory of fractional differential equations in a Banach space,” European Journal of Pure and Applied Mathematics, vol. 1, no. 1, pp. 38–45, 2008. View at Zentralblatt MATH
  16. V. Lakshmikantham, S. Leela, and V. Devi, Theory of Fractional Dynamic Systems, Cambridge Academic, Cambridge, UK, 2009.
  17. V. Lakshmikantham and S. Leela, “A Krasnoselskii-Krein-type uniqueness result for fractional differential equations,” Nonlinear Analysis, vol. 71, no. 7-8, pp. 3421–3424, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. C. Yakar, “Fractional differential equations in terms of comparison results and Lyapunov stability with initial time difference,” Abstract and Applied Analysis, Article ID 762857, 16 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. D. Baleanu and J. I. Trujillo, “A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 5, pp. 1111–1115, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. A. Yakar, “Some generalizations of comparison results for fractional differential equations,” Computers & Mathematics with Applications, vol. 62, no. 8, pp. 3215–3220, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. Y. Zhao, S. Sun, Z. Han, and Q. Li, “Positive solutions to boundary value problems of nonlinear fractional differential equations,” Abstract and Applied Analysis, Article ID 390543, 16 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. C. Y. Lee, H. M. Srivastava, and W.-C. Yueh, “Explicit solutions of some linear ordinary and partial fractional differintegral equations,” Applied Mathematics and Computation, vol. 144, no. 1, pp. 11–25, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. H. M. Srivastava, S. D. Lin, Y. T. Chao, and P.-Y. Wang, “Explicit solutions of a certain class of differential equations by means of fractional calculus,” Russian Journal of Mathematical Physics, vol. 14, no. 3, pp. 357–365, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. P. Y. Wang, S.-D. Lin, and H. M. Srivastava, “Explicit solutions of Jacobi and Gauss differential equations by means of operators of fractional calculus,” Applied Mathematics and Computation, vol. 199, no. 2, pp. 760–769, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  25. A. Ashyralyev and B. Hicdurmaz, “A note on the fractional Schrödinger differential equations,” Kybernetes, vol. 40, no. 5-6, pp. 736–750, 2011. View at Publisher · View at Google Scholar
  26. A. Ashyralyev, F. Dal, and Z. Pınar, “A note on the fractional hyperbolic differential and difference equations,” Applied Mathematics and Computation, vol. 217, no. 9, pp. 4654–4664, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. A. Ashyralyev and Z. Cakir, “On the numerical solution of fractional parabolic partial differential equations,” in Proceedings of the AIP Conference, vol. 1389, pp. 617–620, 2011.
  28. A. Ashyralyev, “Well-posedness of the Basset problem in spaces of smooth functions,” Applied Mathematics Letters, vol. 24, no. 7, pp. 1176–1180, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  29. R. W. Ibrahim and S. Momani, “On the existence and uniqueness of solutions of a class of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. J. Deng and L. Ma, “Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations,” Applied Mathematics Letters, vol. 23, no. 6, pp. 676–680, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  31. D. Băleanu and O. G. Mustafa, “On the global existence of solutions to a class of fractional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1835–1841, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  32. R. W. Ibrahim and S. Momani, “On the existence and uniqueness of solutions of a class of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 1–10, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. X. Zhang and Y. Han, “Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations,” Applied Mathematics Letters, vol. 25, no. 3, pp. 555–560, 2012. View at Publisher · View at Google Scholar
  34. W.-X. Zhou and Y.-D. Chu, “Existence of solutions for fractional differential equations with multi-point boundary conditions,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp. 1142–1148, 2012. View at Publisher · View at Google Scholar
  35. V. Lakshmikantham and A. S. Vatsala, “Basic theory of fractional differential equations,” Nonlinear Analysis, vol. 69, no. 8, pp. 2677–2682, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  36. F. A. McRae, “Monotone iterative technique and existence results for fractional differential equations,” Nonlinear Analysis, vol. 71, no. 12, pp. 6093–6096, 2009. View at Publisher · View at Google Scholar
  37. J. Vasundhara Devi and Ch. Suseela, “Quasilinearization for fractional differential equations,” Communications in Applied Analysis, vol. 12, no. 4, pp. 407–417, 2008. View at Zentralblatt MATH
  38. J. Vasundhara Devi, F. A. McRae, and Z. Drici, “Generalized quasilinearization for fractional differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1057–1062, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  39. C. Yakar and A. Yakar, “A refinement of quasilinearization method for caputo sense fractional order differential equations,” Abstract and Applied Analysis, vol. 2010, Article ID 704367, 10 pages, 2010. View at Publisher · View at Google Scholar
  40. C. Yakar and A. Yakar, “Monotone iterative technique with initial time difference for fractional differential equations,” Hacettepe Journal of Mathematics and Statistics, vol. 40, no. 2, pp. 331–340, 2011.