About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 279843, 11 pages
http://dx.doi.org/10.1155/2012/279843
Research Article

Some Properties of a Generalized Class of Analytic Functions Related with Janowski Functions

1Department of Mathematics, Abdul Wali Khan University, 23200 Mardan, Pakistan
2Department of Mathematics, COMSATS Institute of Information Technology, 44000 Islamabad, Pakistan
3Department of Mathematics, GC University, 38000 Faisalabad, Pakistan

Received 9 February 2012; Accepted 12 March 2012

Academic Editor: Muhammad Aslam Noor

Copyright © 2012 M. Arif et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Janowski, β€œSome extremal problems for certain families of analytic functions. I,” Polska Akademia Nauk. Annales Polonici Mathematici, vol. 28, pp. 297–326, 1973.
  2. B. Pinchuk, β€œFunctions of bounded boundary rotation,” Israel Journal of Mathematics, vol. 10, pp. 6–16, 1971.
  3. K. I. Noor, M. A. Noor, and E. Al-Said, β€œOn analytic functions of bounded boundary rotation of complex order,” Computers & Mathematics with Applications, vol. 62, no. 4, pp. 2112–2125, 2011. View at Publisher Β· View at Google Scholar
  4. K. I. Noor, M. Arif, and W. Ul Haq, β€œSome properties of certain integral operators,” Acta Universitatis Apulensis. Mathematics. Informatics, no. 21, pp. 89–95, 2010.
  5. K. I. Noor, W. Ul-Haq, M. Arif, and S. Mustafa, β€œOn bounded boundary and bounded radius rotations,” Journal of Inequalities and Applications, vol. 2009, Article ID 813687, 12 pages, 2009. View at Publisher Β· View at Google Scholar
  6. V. Paatero, β€œUber gebiete von beschrankter randdrehung,” Annales Academiae Scientiarum Fennicae. Series A, vol. 37, no. 9, 20 pages, 1933.
  7. K. S. Padmanabhan and R. Parvatham, β€œProperties of a class of functions with bounded boundary rotation,” Annales Polonici Mathematici, vol. 31, no. 3, pp. 311–323, 1975/76.
  8. O. Tammi, β€œOn the maximalization of the coefficients o schlicht and related functions,” Annales Academiae Scientiarum Fennicae. Series A, vol. 1952, no. 114, 51 pages, 1952.
  9. K. I. Noor, β€œSome radius of convexity problems for analytic functions related with functions of bounded boundary rotation,” The Punjab University. Journal of Mathematics, vol. 21, pp. 71–81, 1988.
  10. K. I. Noor, β€œOn radii of convexity and starlikeness of some classes of analytic functions,” International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 4, pp. 741–746, 1991. View at Publisher Β· View at Google Scholar
  11. K. I. Noor, β€œOn some integral operators for certain families of analytic functions,” Tamkang Journal of Mathematics, vol. 22, no. 4, pp. 113–117, 1991.
  12. Y. Polatoğlu, M. Bolcal, A. Şen, and E. Yavuz, β€œA study on the generalization of Janowski functions in the unit disc,” Acta Mathematica. Academiae Paedagogicae Nyíregyháziensis, vol. 22, no. 1, pp. 27–31, 2006.
  13. Ch. Pommerenke, β€œOn close-to-convex analytic functions,” Transactions of the American Mathematical Society, vol. 114, pp. 176–186, 1965.
  14. K. I. Noor, β€œOn strongly close-to-convex functions,” Mathematica, vol. 44, no. 1, pp. 25–28, 2002.
  15. J. W. Noonan and D. K. Thomas, β€œOn the Hankel determinants of areally mean p-valent functions,” Proceedings of the London Mathematical Society. Third Series, vol. 25, pp. 503–524, 1972.
  16. P. Dienes, The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable, Dover, New York, NY, USA, 1957.
  17. A. Edrei, β€œSur les déterminants récurrents et les singularités d'une fonction donnée par son développement de Taylor,” Compositio Mathematica, vol. 7, pp. 20–88, 1940.
  18. G. Pólya and I. J. Schoenberg, β€œRemarks on de la Vallée Poussin means and convex conformal maps of the circle,” Pacific Journal of Mathematics, vol. 8, pp. 295–334, 1958.
  19. D. G. Cantor, β€œPower series with integral coefficients,” Bulletin of the American Mathematical Society, vol. 69, pp. 362–366, 1963.
  20. K. I. Noor, β€œHankel determinant problem for the class of functions with bounded boundary rotation,” Académie de la République Populaire Roumaine. Revue Roumaine de Mathématiques Pures et Appliquées, vol. 28, no. 8, pp. 731–739, 1983.
  21. C. Pommerenke, β€œOn starlike and close-to-convex functions,” Proceedings of the London Mathematical Society. Third Series, vol. 13, pp. 290–304, 1963.
  22. K. I. Noor, β€œOn the Hankel determinants of close-to-convex univalent functions,” International Journal of Mathematics and Mathematical Sciences, vol. 3, no. 3, pp. 447–481, 1980. View at Publisher Β· View at Google Scholar
  23. K. I. Noor, β€œOn the Hankel determinant problem for strongly close-to-convex functions,” Journal of Natural Geometry, vol. 11, no. 1, pp. 29–34, 1997.
  24. K. I. Noor and I. M. A. Al-Naggar, β€œOn the Hankel determinant problem,” Journal of Natural Geometry, vol. 14, no. 2, pp. 133–140, 1998.
  25. G. M. Golusin, β€œOn distortion theorem and coefficients cients of univalent functions,” Mathematicheskii Sbornik, vol. 19, pp. 183–2023, 1946.