About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 285931, 16 pages
http://dx.doi.org/10.1155/2012/285931
Research Article

Improved Criteria on Delay-Dependent Stability for Discrete-Time Neural Networks with Interval Time-Varying Delays

1School of Electrical Engineering, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, Cheongju 361-763, Republic of Korea
2Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Gyeongsan 712-749, Republic of Korea
3School of Electronic Engineering, Daegu University, Gyeongsan 712-714, Republic of Korea
4Department of Biomedical Engineering, School of Medicine, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, Cheongju 361-763, Republic of Korea

Received 16 August 2012; Accepted 5 October 2012

Academic Editor: Tingwen Huang

Copyright © 2012 O. M. Kwon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Faydasicok and S. Arik, “Equilibrium and stability analysis of delayed neural networks under parameter uncertainties,” Applied Mathematics and Computation, vol. 218, no. 12, pp. 6716–6726, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. O. Faydasicok and S. Arik, “Further analysis of global robust stability of neural networks with multiple time delays,” Journal of the Franklin Institute, vol. 349, no. 3, pp. 813–825, 2012. View at Publisher · View at Google Scholar
  3. T. Ensari and S. Arik, “New results for robust stability of dynamical neural networks with discrete time delays,” Expert Systems with Applications, vol. 37, no. 8, pp. 5925–5930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Li, C. Li, and T. Huang, “Exponential stability of impulsive high-order Hopfield-type neural networks with delays and reaction-diffusion,” International Journal of Computer Mathematics, vol. 88, no. 15, pp. 3150–3162, 2011. View at Publisher · View at Google Scholar
  5. C. J. Li, C. D. Li, T. Huang, and X. Liao, “Impulsive effects on stability of high-order BAM neural networks with time delays,” Neurocomputing, vol. 74, no. 10, pp. 1541–1550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. D. J. Lu and C. J. Li, “Exponential stability of stochastic high-order BAM neural networks with time delays and impulsive effects,” Neural Computing and Applications. In press. View at Publisher · View at Google Scholar · View at Scopus
  7. C. D. Li, C. J. Li, and C. Liu, “Destabilizing effects of impulse in delayed bam neural networks,” Modern Physics Letters B, vol. 23, no. 29, pp. 3503–3513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. D. Li, S. Wu, G. G. Feng, and X. Liao, “Stabilizing effects of impulses in discrete-time delayed neural networks,” IEEE Transactions on Neural Networks, vol. 22, no. 2, pp. 323–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Wang and Q. Song, “Synchronization for an array of coupled stochastic discrete-time neural networks with mixed delays,” Neurocomputing, vol. 74, no. 10, pp. 1572–1584, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Liu, Z. Wang, and X. Liu, “Global exponential stability of generalized recurrent neural networks with discrete and distributed delays,” Neural Networks, vol. 19, no. 5, pp. 667–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Liu, Z. Wang, A. Serrano, and X. Liu, “Discrete-time recurrent neural networks with time-varying delays: exponential stability analysis,” Physics Letters A, vol. 362, no. 5-6, pp. 480–488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Q. Song and Z. Wang, “A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with time-varying delays,” Physics Letters A, vol. 368, no. 1-2, pp. 134–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Zhang, S. Xu, and Y. Zou, “Improved delay-dependent exponential stability criteria for discrete-time recurrent neural networks with time-varying delays,” Neurocomputing, vol. 72, no. 1–3, pp. 321–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Song, H. Gao, and W. Xing Zheng, “A new approach to stability analysis of discrete-time recurrent neural networks with time-varying delay,” Neurocomputing, vol. 72, no. 10-12, pp. 2563–2568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Zhang, S. Xu, and Z. Zeng, “Novel robust stability criteria of discrete-time stochastic recurrent neural networks with time delay,” Neurocomputing, vol. 72, no. 13-15, pp. 3343–3351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Wu, H. Su, J. Chu, and W. Zhou, “Improved delay-dependent stability condition of discrete recurrent neural networks with time-varying delays,” IEEE Transactions on Neural Networks, vol. 21, no. 4, pp. 692–697, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Xu and J. Lam, “A survey of linear matrix inequality techniques in stability analysis of delay systems,” International Journal of Systems Science, vol. 39, no. 12, pp. 1095–1113, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. H. Y. Shao, “Improved delay-dependent stability criteria for systems with a delay varying in a range,” Automatica, vol. 44, no. 12, pp. 3215–3218, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. P. Park, J. W. Ko, and C. Jeong, “Reciprocally convex approach to stability of systems with time-varying delays,” Automatica, vol. 47, no. 1, pp. 235–238, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. S. H. Kim, “Improved approach to robust stabilization of discrete-time T–S fuzzy systems with time-varying delays,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 1008–1015, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. X. L. Zhu and G. H. Yang, “Jensen inequality approach to stability analysis of discrete-time systems with time-varying delay,” in Proceedings of the American Control Conference (ACC '08), pp. 1644–1649, Seattle, Wash, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. C. de Oliveira and R. E. Skelton, Stability Tests for Constrained Linear Systems, Springer, Berlin, Germany, 2001.
  23. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, vol. 15 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994. View at Publisher · View at Google Scholar