About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 294694, 21 pages
http://dx.doi.org/10.1155/2012/294694
Research Article

Uniqueness and Asymptotic Behavior of Positive Solutions for a Fractional-Order Integral Boundary Value Problem

Communication Research Center, Harbin Institute of Technology, Harbin 150080, China

Received 18 July 2012; Accepted 7 August 2012

Academic Editor: Xinguang Zhang

Copyright © 2012 Min Jia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua's system,” IEEE Transactions on Circuits and Systems I, vol. 42, no. 8, pp. 485–490, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. S. M. Caputo, “Free modes splitting and alterations of electrochemically polarizable media,” Rendiconti Lincei, vol. 4, no. 2, pp. 89–98, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. T. J. Anastasio, “The fractional-order dynamics of brainstem vestibulo-oculomotor neurons,” Biological Cybernetics, vol. 72, no. 1, pp. 69–79, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Khan, “The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 19, pp. 1–15, 2003. View at Zentralblatt MATH
  5. J. M. Gallardo, “Second-order differential operators with integral boundary conditions and generation of analytic semigroups,” The Rocky Mountain Journal of Mathematics, vol. 30, no. 4, pp. 1265–1291, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. G. L. Karakostas and P. Ch. Tsamatos, “Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems,” Electronic Journal of Differential Equations, vol. 30, pp. 1–17, 2002. View at Zentralblatt MATH
  7. B. Ahmad, S. K. Ntouyas, and A. Alsaedi, “New existence results for nonlinear fractional differential equations with three-point integral boundary conditions,” Advances in Difference Equations, vol. 2011, Article ID 107384, 11 pages, 2011. View at Zentralblatt MATH
  8. M. Feng, X. Liu, and H. Feng, “The existence of positive solution to a nonlinear fractional differential equation with integral boundary conditions,” Advances in Difference Equations, vol. 2011, Article ID 546038, 14 pages, 2011. View at Zentralblatt MATH
  9. C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, UK, 1991. View at Publisher · View at Google Scholar
  10. R. P. Agarwal and D. O'Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. View at Publisher · View at Google Scholar
  11. R. Ma and N. Castaneda, “Existence of solutions of nonlinear m-point boundary-value problems,” Journal of Mathematical Analysis and Applications, vol. 256, no. 2, pp. 556–567, 2001. View at Publisher · View at Google Scholar
  12. P. W. Eloe and B. Ahmad, “Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions,” Applied Mathematics Letters, vol. 18, no. 5, pp. 521–527, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. X. Hao, L. Liu, Y. Wu, and Q. Sun, “Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions,” Nonlinear Analysis. Theory, Methods & Applications A, vol. 73, no. 6, pp. 1653–1662, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. C. Yuan, “Multiple positive solutions for (n-1,1)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations,” Electronic Journal of Qualitative Theory of Differential Equations, no. 36, pp. 1–12, 2010.
  15. S. Zhang, “Positive solutions to singular boundary value problem for nonlinear fractional differential equation,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1300–1309, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. X. Zhang and Y. Han, “Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations,” Applied Mathematics Letters, vol. 25, no. 3, pp. 555–560, 2012. View at Publisher · View at Google Scholar
  17. X. Zhang, L. Liu, and Y. Wu, “The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives,” Applied Mathematics and Computation, vol. 218, no. 17, pp. 8526–8536, 2012. View at Publisher · View at Google Scholar
  18. X. Zhang, L. Liu, B. Wiwatanapataphee, and Y. Wu, “Positive solutions of eigenvalue problems for a class of fractional differential equations with derivatives,” Abstract and Applied Analysis, vol. 2012, Article ID 512127, 16 pages, 2012. View at Zentralblatt MATH
  19. X. Zhang, L. Liu, and Y. Wu, “Multiple positive solutions of a singular fractional differential equation with negatively perturbed term,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 1263–1274, 2012. View at Publisher · View at Google Scholar
  20. X. Zhang, L. Liu, and Y. Wu, “Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives,” Applied Mathematics and Computation. In press. View at Publisher · View at Google Scholar
  21. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, Ny, USA, 1993.
  22. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999.
  23. J. R. L. Webb and G. Infante, “Non-local boundary value problems of arbitrary order,” Journal of the London Mathematical Society, vol. 79, no. 1, pp. 238–258, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH