About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 354701, 7 pages
http://dx.doi.org/10.1155/2012/354701
Research Article

Fractal Derivative Model for Air Permeability in Hierarchic Porous Media

Jie Fan1,2,3,4 and Jihuan He2

1Key Laboratory of Advanced Textile Composites, Ministry of Education of China, 399 West Binshui Road, Tianjin 300387, China
2National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
3Zhejiang Provincial Key Laboratory of Textile Research and Development, 138 Jiefang Road, Hangzhou 310001, China
4School of Textiles, Tianjin Polytechnic University, 399 West Binshui Road, Tianjin 300387, China

Received 7 August 2012; Revised 16 November 2012; Accepted 17 November 2012

Academic Editor: Chuandong Li

Copyright © 2012 Jie Fan and Jihuan He. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Fan, Z. Luo, and Y. Li, “Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation,” International Journal of Heat and Mass Transfer, vol. 43, no. 16, pp. 2989–3000, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  2. J. Fan and X. Wen, “Modeling heat and moisture transfer through fibrous insulation with phase change and mobile condensates,” International Journal of Heat and Mass Transfer, vol. 45, no. 19, pp. 4045–4055, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  3. X. Qian and J. Fan, “A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing,” Applied Ergonomics, vol. 40, no. 4, pp. 577–590, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Blossman-Myer and W. W. Burggren, “The silk cocoon of the silkworm, Bombyx mori: macro structure and its influence on transmural diffusion of oxygen and water vapor,” Comparative Biochemistry and Physiology, vol. 155, no. 2, pp. 259–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Weisman, H. E. Trueman, S. T. Mudie, J. S. Church, T. D. Sutherland, and V. S. Haritos, “An unlikely silk: the composite material of green lacewing cocoons,” Biomacromolecules, vol. 9, no. 11, pp. 3065–3069, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Z. Zhang, “A fractal model for gas permeation through porous membranes,” International Journal of Heat and Mass Transfer, vol. 51, no. 21-22, pp. 5288–5295, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  7. Q. Zheng, B. Yu, S. Wang, et al., “A diffusivity model for gas diffusion through fractal porous media,” Chemical Engineering Science, vol. 68, pp. 650–655, 2012. View at Publisher · View at Google Scholar
  8. T. E. Rufford, S. Smart, G. C. Y. Watson, et al., “The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies,” Journal of Petroleum Science and Engineering, vol. 94-95, no. 9, pp. 123–154, 2012. View at Publisher · View at Google Scholar
  9. M. Gassner, R. Baciocchi, F. Maréchal, and M. Mazzotti, “Integrated design of a gas separation system for the upgrade of crude SNG with membranes,” Chemical Engineering and Processing, vol. 48, no. 9, pp. 1391–1404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Giona, A. Adrover, W. A. Schwalm, and M. K. Schwalm, “Exact solution of linear transport equations in fractal media- III. Adsorption and chemical reaction,” Chemical Engineering Science, vol. 51, no. 22, pp. 5065–5076, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Shi, H. Wu, S. Quan, J. Xiao, and M. Pan, “Fractal model for predicting the effective binary oxygen diffusivity of the gas diffusion layer in proton exchange membrane fuel cells,” Journal of Power Sources, vol. 195, no. 15, pp. 4865–4870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Wu, Q. Liao, X. Zhu, and H. Wang, “A fractal model for determining oxygen effective diffusivity of gas diffusion layer under the dry and wet conditions,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4341–4348, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  13. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York, NY, USA, 1983. View at Zentralblatt MATH
  14. W. Chen, H. Sun, X. Zhang, and D. Korošak, “Anomalous diffusion modeling by fractal and fractional derivatives,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1754–1758, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. D. Shou, J. Fan, and F. Ding, “A difference-fractal model for the permeability of fibrous porous media,” Physics Letters A, vol. 374, no. 10, pp. 1201–1204, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  16. M. D. Qassim, K. M. Furati, and N.-E. Tatar, “On a differential equation involving Hilfer-Hadamard fractional derivative,” Abstract and Applied Analysis, vol. 2012, Article ID 391062, 17 pages, 2012.
  17. A. Ashyralyev, “A note on fractional derivatives and fractional powers of operators,” Journal of Mathematical Analysis and Applications, vol. 357, no. 1, pp. 232–236, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. Q. Wang, J. He, and Z. Li, “Fractional model for heat conduction in polar bear hairs,” Thermal Science, vol. 15, pp. 1–5, 2011. View at Publisher · View at Google Scholar
  19. W. Chen, “Time-space fabric underlying anomalous diffusion,” Chaos, Solitons and Fractals, vol. 28, no. 4, pp. 923–929, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  20. J. H. He, “A new fractal derivation,” Thermal Science, vol. 15, supplement 1, pp. S145–S147, 2011. View at Publisher · View at Google Scholar · View at Scopus