About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 361269, 18 pages
http://dx.doi.org/10.1155/2012/361269
Research Article

Finite-Time Stabilization of Stochastic Nonholonomic Systems and Its Application to Mobile Robot

School of Mathematics and Statistics, Anyang Normal University, Anyang 455002, Henan Province, China

Received 19 July 2012; Accepted 27 September 2012

Academic Editor: Ahmed El-Sayed

Copyright © 2012 Fangzheng Gao and Fushun Yuan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Brockett, “Asymptotic stability andfeed back stabilization,” in Differential Geometric Control Theory, R. S. Millman and H. J. Sussmann, Eds., pp. 2961–2963, Birkhäauser, Boston, Mass, USA, 1983.
  2. A. Astolfi, “Discontinuous control of nonholonomic systems,” Systems & Control Letters, vol. 27, no. 1, pp. 37–45, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. W. L. Xu and W. Huo, “Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator,” Systems & Control Letters, vol. 41, no. 4, pp. 225–235, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: steering using sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. Z.-P. Jiang, “Iterative design of time-varying stabilizers for multi-input systems in chained form,” Systems & Control Letters, vol. 28, no. 5, pp. 255–262, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. Y.-P. Tian and S. Li, “Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control,” Automatica, vol. 38, no. 8, pp. 1139–1146, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. I. Kolmanovsky and N. H. McClamroch, “Hybrid feedback laws for a class of cascade nonlinear control systems,” IEEE Transactions on Automatic Control, vol. 41, no. 9, pp. 1271–1282, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. Z.-P. Jiang, “Robust exponential regulation of nonholonomic systems with uncertainties,” Automatica, vol. 36, no. 2, pp. 189–209, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. Z. Xi, G. Feng, Z. P. Jiang, and D. Cheng, “A switching algorithm for global exponential stabilization of uncertain chained systems,” IEEE Transactions on Automatic Control, vol. 48, no. 10, pp. 1793–1798, 2003. View at Publisher · View at Google Scholar
  10. S. S. Ge, Z. Wang, and T. H. Lee, “Adaptive stabilization of uncertain nonholonomic systems by state and output feedback,” Automatica, vol. 39, no. 8, pp. 1451–1460, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. Y.-G. Liu and J.-F. Zhang, “Output-feedback adaptive stabilization control design for non-holonomic systems with strong non-linear drifts,” International Journal of Control, vol. 78, no. 7, pp. 474–490, 2005. View at Publisher · View at Google Scholar
  12. Z. Xi, G. Feng, Z. P. Jiang, and D. Cheng, “Output feedback exponential stabilization of uncertain chained systems,” Journal of the Franklin Institute, vol. 344, no. 1, pp. 36–57, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. X. Zheng and Y. Wu, “Adaptive output feedback stabilization for nonholonomic systems with strong nonlinear drifts,” Nonlinear Analysis: Theory, Methods & Applications, vol. 70, no. 2, pp. 904–920, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. F. Gao, F. Yuan, and H. Yao, “Robust adaptive control for nonholonomic systems with nonlinear parameterization,” Nonlinear Analysis: Real World Applications, vol. 11, no. 4, pp. 3242–3250, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. Z.-Y. Liang and C.-L. Wang, “Robust stabilization of nonholonomic chained form systems with uncertainties,” Acta Automatica Sinica, vol. 37, no. 2, pp. 129–142, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. J. Wang, H. Gao, and H. Li, “Adaptive robust control of nonholonomic systems with stochastic disturbances,” Science in China. Series F, vol. 49, no. 2, pp. 189–207, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. Y.-L. Liu and Y.-Q. Wu, “Output feedback control for stochastic nonholonomic systems with growth rate restriction,” Asian Journal of Control, vol. 13, no. 1, pp. 177–185, 2011. View at Publisher · View at Google Scholar
  18. Y. Zhao, J. Yu, and Y. Wu, “State-feedback stabilization for a class of more general high order stochastic nonholonomic systems,” International Journal of Adaptive Control and Signal Processing, vol. 25, no. 8, pp. 687–706, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. S. P. Bhat and D. S. Bernstein, “Continuous finite-time stabilization of the translational and rotational double integrators,” IEEE Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. E. Moulay and W. Perruquetti, “Finite time stability and stabilization of a class of continuous systems,” Journal of Mathematical Analysis and Applications, vol. 323, no. 2, pp. 1430–1443, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. E. Moulay and W. Perruquetti, “Finite time stability conditions for non-autonomous continuous systems,” International Journal of Control, vol. 81, no. 5, pp. 797–803, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. Y. Hong, Z.-P. Jiang, and G. Feng, “Finite-time input-to-state stability and applications to finite-time control design,” SIAM Journal on Control and Optimization, vol. 48, no. 7, pp. 4395–4418, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. Y. Hong, “Finite-time stabilization and stabilizability of a class of controllable systems,” Systems & Control Letters, vol. 46, no. 4, pp. 231–236, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. Y. Hong and J. Wang, “Finite time stabilization of a class of nonlinear systems,” Science China, vol. 35, pp. 663–672, 2005.
  25. X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization of a class of uncertain nonlinear systems,” Automatica, vol. 41, no. 5, pp. 881–888, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. S. Li and Y.-P. Tian, “Finite-time stability of cascaded time-varying systems,” International Journal of Control, vol. 80, no. 4, pp. 646–657, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. X. Chang and Y. G. Liu, “Finite-time stabilization for a class of zero-dynamics uncertain nonlinear systems with adjustable-settling-time,” Control Theory and Applications, vol. 26, no. 4, pp. 358–364, 2009. View at Scopus
  28. Y. Hong, J. Wang, and Z. Xi, “Stabilization of uncertain chained form systems within finite settling time,” IEEE Transactions on Automatic Control, vol. 50, no. 9, pp. 1379–1384, 2005. View at Publisher · View at Google Scholar
  29. J. Yin, S. Khoo, Z. Man, and X. Yu, “Finite-time stability and instability of stochastic nonlinear systems,” Automatica, vol. 47, no. 12, pp. 2671–2677, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  30. R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, NY, USA, 2005.
  31. W. Chen and L. C. Jiao, “Finite-time stability theorem of stochastic nonlinear systems,” Automatica, vol. 46, no. 12, pp. 2105–2108, 2010. View at Publisher · View at Google Scholar
  32. H. Liu and X. Mu, “A converse Lyapunov theorems for stochastic finite-time stability,” in Proceedings of the 30th Chinese Control Conference (CCC '11), pp. 1419–1423, 2011.
  33. W. Li, X.-J. Xie, and S. Zhang, “Output-feedback stabilization of stochastic high-order nonlinear systems under weaker conditions,” SIAM Journal on Control and Optimization, vol. 49, no. 3, pp. 1262–1282, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  34. J. P. Hespanha, D. Liberzon, and A. S. Morse, “Towards the supervisory control of uncertain nonholonomic systems,” in Proceedings of the American Control Conference (ACC '99), pp. 3520–3524, San Diego, Calif, USA, 1999. View at Scopus