About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 381708, 19 pages
http://dx.doi.org/10.1155/2012/381708
Research Article

An Adaptive Pseudospectral Method for Fractional Order Boundary Value Problems

1School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia
2Department of Mathematics, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
3Department of Mathematics, Imam Khomeini International University, Ghazvin 34149-16818, Iran

Received 3 June 2012; Revised 17 August 2012; Accepted 30 August 2012

Academic Editor: Dumitru Bǎleanu

Copyright © 2012 Mohammad Maleki et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Hackensack, NJ, USA, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. View at Zentralblatt MATH
  3. S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, New York, NY, USA, 2008. View at Zentralblatt MATH
  4. K. Moaddy, I. Hashim, and S. Momani, “Non-standard finite difference schemes for solving fractional-order Rössler chaotic and hyperchaotic systems,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1068–1074, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. A. Pedas and E. Tamme, “Piecewise polynomial collocation for linear boundary value problems of fractional differential equations,” Journal of Computational and Applied Mathematics, vol. 236, no. 13, pp. 3349–3359, 2012. View at Publisher · View at Google Scholar
  6. Q. M. Al-Mdallal, M. I. Syam, and M. N. Anwar, “A collocation-shooting method for solving fractional boundary value problems,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 12, pp. 3814–3822, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. N. J. Ford and J. A. Connolly, “Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations,” Journal of Computational and Applied Mathematics, vol. 229, no. 2, pp. 382–391, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. S. Momani and Z. Odibat, “Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 488–494, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. G. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters A, vol. 374, no. 25, pp. 2506–2509, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. S. Abbasbandy, “An approximation solution of a nonlinear equation with Riemann-Liouville's fractional derivatives by He's variational iteration method,” Journal of Computational and Applied Mathematics, vol. 207, no. 1, pp. 53–58, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. J.-H. He, “A short remark on fractional variational iteration method,” Physics Letters A, vol. 375, no. 38, pp. 3362–3364, 2011. View at Publisher · View at Google Scholar
  12. J. H. He, G. C. Wu, and F. Austin, “The variational iteration method which should be followed,” Nonlinear Science Letters A, vol. 1, no. 1, pp. 1–30, 2010.
  13. M. Lakestani, M. Dehghan, and S. Irandoust-pakchin, “The construction of operational matrix of fractional derivatives using B-spline functions,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 3, pp. 1149–1162, 2012. View at Publisher · View at Google Scholar
  14. M. U. Rehman and R. A. Khan, “A numerical method for solving boundary value problems for fractional differential equations,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 894–907, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, “A new Jacobi operational matrix: an application for solving fractional differential equations,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 4931–4943, 2012.
  16. M. U. Rehman and R. Ali Khan, “The Legendre wavelet method for solving fractional differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 11, pp. 4163–4173, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. O. Abdulaziz, I. Hashim, and S. Momani, “Application of homotopy-perturbation method to fractional IVPs,” Journal of Computational and Applied Mathematics, vol. 216, no. 2, pp. 574–584, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. I. Hashim, O. Abdulaziz, and S. Momani, “Homotopy analysis method for fractional IVPs,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 674–684, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. A. Al-Rabtah, S. Momani, and M. A. Ramadan, “Solving linear and nonlinear fractional differential equations using spline functions,” Abstract and Applied Analysis, vol. 2012, Article ID 426514, 9 pages, 2012. View at Publisher · View at Google Scholar
  20. D. Baleanu, H. Mohammadi, and S. Rezapour, “Positive solutions of an initial value problem for nonlinear fractional differential equations,” Abstract and Applied Analysis, vol. 2012, Article ID 837437, 7 pages, 2012. View at Publisher · View at Google Scholar
  21. J.-H. He, S. K. Elagan, and Z. B. Li, “Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus,” Physics Letters A, vol. 376, no. 4, pp. 257–259, 2012. View at Publisher · View at Google Scholar
  22. M. Moshrefi-Torbati and J. K. Hammond, “Physical and geometrical interpretation of fractional operators,” Journal of the Franklin Institute B, vol. 335, no. 6, pp. 1077–1086, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent,” Journal of the Royal Australian Society, vol. 13, Part 2, pp. 529–539, 1967.
  24. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Scientific Computation, Springer, Berlin, Germany, 2006.
  25. M. Maleki, I. Hashim, and S. Abbasbandy, “Solution of time-varying delay systems using an adaptive collocation method,” Applied Mathematics and Computation, vol. 219, no. 4, pp. 1434–1448, 2012.
  26. P. J. Torvik and R. L. Bagley, “On the appearance of the fractional derivative in the behavior of real materials,” Journal of Applied Mechanics, vol. 51, no. 2, pp. 294–298, 1984. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  27. Y. Çenesiz, Y. Keskin, and A. Kurnaz, “The solution of the Bagley-Torvik equation with the generalized Taylor collocation method,” Journal of the Franklin Institute, vol. 347, no. 2, pp. 452–466, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. S. Momani and Z. Odibat, “Numerical comparison of methods for solving linear differential equations of fractional order,” Chaos, Solitons & Fractals, vol. 31, no. 5, pp. 1248–1255, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH