About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 405739, 19 pages
http://dx.doi.org/10.1155/2012/405739
Research Article

A Novel Chaotic Neural Network Using Memristive Synapse with Applications in Associative Memory

1School of Electronics and Information Engineering, Southwest University, Chongqing 400715, China
2Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong

Received 22 September 2012; Accepted 1 November 2012

Academic Editor: Chuandong Li

Copyright © 2012 Xiaofang Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Aihara, T. Takabe, and M. Toyoda, “Chaotic neural networks,” Physics Letters A, vol. 144, no. 6-7, pp. 333–340, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Yao and W. J. Freeman, “Model of biological pattern recognition with spatially chaotic dynamics,” Neural Networks, vol. 3, no. 2, pp. 153–170, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Osana and M. Hagiwara, “Separation of superimposed pattern and many-to-many associations by chaotic neural networks,” in Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 514–519, May 1998. View at Scopus
  4. K. Kaneko, “Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements,” Physica D, vol. 41, no. 2, pp. 137–172, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  5. S. Ishii, K. Fukumizu, and S. Watanabe, “A network of chaotic elements for information processing,” Neural Networks, vol. 9, no. 1, pp. 25–40, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Osana, M. Hattori, and M. Hagiwara, “Chaotic bidirectional associative memory,” in Proceedings of the IEEE International Conference on Neural Networks (ICNN '96), pp. 816–821, June 1996. View at Scopus
  7. Y. Osana and M. Hagiwara, “Successive learning in chaotic neural network,” in Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1510–1515, May 1998. View at Scopus
  8. N. Kawasaki, Y. Osana, and M. Hagiwara, “Chaotic associative memory for successive learning using internal patterns,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 4, pp. 2521–2526, October 2000. View at Scopus
  9. Y. Osana, “Improved chaotic associative memory using distributed patterns for image retrieval,” in Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 846–851, July 2003. View at Scopus
  10. G. Y. Liu and S. K. Duan, A Chaotic Neural Network and Its Applications in Separation Superimposed Pattern and Many-to-Many Associative Memory, vol. 30, Computer Science, Chongqing, China, 2003.
  11. S. Duan, G. Liu, L. Wang, and Y. Qiu, “A novel chaotic neural network for many-to-many associations and successive learning,” in Proceedings of the International Conference on Neural Networks and Signal Processing (ICNNSP '03), vol. 1, pp. 135–138, Nanjing, China, December 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. K. Duan and L. D. Wang, “A novel chaotic neural network for automatic material ratio system,” in Proceedings of the International Symposium on Neural Networks, Lecture Notes in Computer Science, pp. 813–819, Dalian, China, 2004.
  13. L. Wang, S. Duan, and G. Liu, “Adaptive chaotic controlling method of a chaotic neural network model,” in Proceedings of the 2nd International Symposium on Neural Networks: Advances in Neural Networks (ISNN '05), pp. 363–368, June 2005. View at Scopus
  14. L. O. Chua, “Memristor—the missing circuit element,” IEEE Transactions on Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971. View at Publisher · View at Google Scholar
  15. L. Chua, “Resistance switching memories are memristors,” Applied Physics A, vol. 102, no. 4, pp. 765–783, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. S. Williams, “How we found the missing Memristor,” IEEE Spectrum, vol. 45, no. 12, pp. 28–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Robinett, M. Pickett, J. Borghetti et al., “A memristor-based nonvolatile latch circuit,” Nanotechnology, vol. 21, no. 23, Article ID 235203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. Stanley Williams, “Writing to and reading from a nano-scale crossbar memory based on memristors,” Nanotechnology, vol. 20, no. 42, Article ID 425204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale memristor device as synapse in neuromorphic systems,” Nano Letters, vol. 10, no. 4, pp. 1297–1301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Masquelier and S. J. Thorpe, “Learning to recognize objects using waves of spikes and spike timing-dependent plasticity,” in Proceedings of the IEEE Word Congress on Computational Intelligence (WCCI '10), pp. 2600–2607, Barcelona, Spain, July 2010.
  22. A. Afifi, A. Ayatollahi, F. Raissi, and H. Hajghassem, “Efficient hybrid CMOS-Nano circuit design for spiking neurons and memristive synapses with STDP,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E93-A, no. 9, pp. 1670–1677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Muthuswamy and P. Kokate, “Memristor-based chaotic circuits,” IETE Technical Review, vol. 26, no. 6, pp. 417–429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Sun, C. Li, and J. Yu, “A memristor based chaotic oscillator,” in Proceedings of the International Conference on Communications, Circuits and Systems (ICCCAS '09), pp. 955–957, Milpitas, Calif, USA, July 2009. View at Scopus
  25. S. Shin, K. Kim, and S. M. Kang, “Memristor-based fine resolution programmable resistance and its applications,” in Proceedings of the International Conference on Communications, Circuits and Systems (ICCCAS '09), pp. 948–951, July 2009. View at Scopus
  26. T. Raja and S. Mourad, “Digital logic implementation in memristor-based crossbars,” in Proceedings of the International Conference on Communications, Circuits and Systems (ICCCAS '09), pp. 939–943, July 2009. View at Scopus
  27. “Programmable electronics using memristor crossbars,” 2009, http://www.ontheknol.com/frontpage-knol/programmable-electronics-using-memristor-crossbars.
  28. X. F. Hu, S. K. Duan, L. D. Wang, and X. F. Liao, “Memristive crossbar array with applications in imageprocessing,” Science China Information Sciences, vol. 41, no. 4, pp. 500–512, 2011.
  29. T. A. Wey and W. D. Jemison, “Variable gain amplifier circuit using titanium dioxide memristors,” IET Circuits, Devices and Systems, vol. 5, no. 1, pp. 59–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. http://icwww.epfl.ch/~gerstner/SPNM/node6.html.
  31. http://en.wikipedia.org/wiki/Lyapunov_exponent.