About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 415431, 22 pages
http://dx.doi.org/10.1155/2012/415431
Research Article

On the Exact Analytical and Numerical Solutions of Nano Boundary-Layer Fluid Flows

1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
3Department of Mathematics, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia

Received 31 May 2012; Revised 24 July 2012; Accepted 25 July 2012

Academic Editor: Svatoslav Staněk

Copyright © 2012 Emad H. Aly and Abdelhalim Ebaid. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J.-H. He, Y.-Q. Wan, and L. Xu, “Nano-effects, quantum-like properties in electrospun nanofibers,” Chaos, Solitons and Fractals, vol. 33, no. 1, pp. 26–37, 2007. View at Publisher · View at Google Scholar
  2. L. Prandtl, “Über Flüssigkeitsbewegung bei sehr kleiner Reibung,” in Proceedings of the 3rd International Mathematical Congress, 1904.
  3. M. Gad-el-Hak, “The fluid mechanics of macrodevices-the Freeman scholar lecture,” Journal of Fluids Engineering, vol. 121, pp. 5–33, 1999.
  4. M. T. Matthews and J. M. Hill, “Nano boundary layer equation with nonlinear Navier boundary condition,” Journal of Mathematical Analysis and Applications, vol. 333, no. 1, pp. 381–400, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. M. T. Matthews and J. M. Hill, “Micro/nano thermal boundary layer equations with slip-creep-jump boundary conditions,” IMA Journal of Applied Mathematics, vol. 72, no. 6, pp. 894–911, 2007. View at Publisher · View at Google Scholar
  6. M. T. Matthews and J. M. Hill, “A note on the boundary layer equations with linear slip boundary condition,” Applied Mathematics Letters, vol. 21, no. 8, pp. 810–813, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. J. Cheng, S. Liao, R. N. Mohapatra, and K. Vajravelu, “Series solutions of nano boundary layer flows by means of the homotopy analysis method,” Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 233–245, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. C. Y. Wang, “Analysis of viscous flow due to a stretching sheet with surface slip and suction,” Nonlinear Analysis. Real World Applications, vol. 10, no. 1, pp. 375–380, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. F. Talay Akyildiz, H. Bellout, K. Vajravelu, and R. A. Van Gorder, “Existence results for third order nonlinear boundary value problems arising in nano boundary layer fluid flows over stretching surfaces,” Nonlinear Analysis. Real World Applications, vol. 12, no. 6, pp. 2919–2930, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. M. M. Rashidi and E. Erfani, “The modified differential transform method for investigating nano boundary-layers over stretching surfaces,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 21, pp. 864–883, 2011.
  11. R. A. Van Gorder, E. Sweet, and K. Vajravelu, “Nano boundary layers over stretching surfaces,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 6, pp. 1494–1500, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. C. Y. Wang, “Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equations,” Chemical Engineering Science, vol. 57, pp. 3745–3747, 2002.
  13. E. J. Parkes and B. R. Duffy, “An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations,” Computer Physics Communications, vol. 98, pp. 288–300, 1996.
  14. S. Liu, Z. Fu, S. Liu, and Q. Zhao, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,” Physics Letters A, vol. 289, no. 1-2, pp. 69–74, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. A. Ebaid and E. H. Aly, “Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions,” Wave Motion, vol. 49, pp. 296–308, 2012.
  16. J.-H. He and X.-H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons and Fractals, vol. 30, no. 3, pp. 700–708, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. X.-H. Wu and J.-H. He, “EXP-function method and its application to nonlinear equations,” Chaos, Solitons and Fractals, vol. 38, no. 3, pp. 903–910, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. A. Ebaid, “Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method,” Physics Letters A, vol. 365, no. 3, pp. 213–219, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. A. Ebaid, “Application of the exp-function method for solving some evolution equations with nonlinear terms of any orders,” Zeitschrift für Naturforschung, vol. 65, pp. 1039–1044, 2010.
  20. C. Chun, “New solitary wave solutions to nonlinear evolution equations by the Exp-function method,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2107–2110, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. A. Ebaid, “Generalization of He’s exp-function method and new exact solutions for Burgers equation,” Zeitschrift für Naturforschung, vol. 64, pp. 604–608, 2009.
  22. M. Wang, X. Li, and J. Zhang, “The G/G-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics,” Physics Letters A, vol. 372, no. 4, pp. 417–423, 2008. View at Publisher · View at Google Scholar
  23. R. Abazari, “Application of G/G-expansion method to travelling wave solutions of three nonlinear evolution equation,” Computers & Fluids, vol. 39, no. 10, pp. 1957–1963, 2010. View at Publisher · View at Google Scholar
  24. S. Yu, “A generalized G/G-expansion method and its application to the MKdV equation,” International Journal of Nonlinear Science, vol. 8, no. 3, pp. 374–378, 2009.
  25. X. Fan, S. Yang, and D. Zhao, “Travelling wave solutions for the Gilson-Pickering equation by using the simplified G/G-expansion method,” International Journal of Nonlinear Science, vol. 8, no. 3, pp. 368–373, 2009.
  26. E. H. Aly, M. Benlahsen, and M. Guedda, “Similarity solutions of a MHD boundary-layer flow past a continuous moving surface,” International Journal of Engineering Science, vol. 45, no. 2–8, pp. 486–503, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. M. Guedda, E. H. Aly, and A. Ouahsine, “Analytical and ChPDM analysis of MHD mixed convection over a vertical flat plate embedded in a porous medium filled with water at 4°C,” Applied Mathematical Modelling, vol. 35, no. 10, pp. 5182–5197, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  28. E. H. Aly, N. T. El-Dabe, and A. S. Al-Bareda, “ChPDM analysis for MHD flow of viscoelastic fluid through porous media,” Journal of Applied Sciences Research. In press.
  29. L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik, vol. 21, pp. 645–647, 1970.
  30. H. I. Andersson, “Slip flow past a stretching surface,” Acta Mechanica, vol. 158, pp. 121–125, 2002.
  31. P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” The Canadian Journal of Chemical Engineering, vol. 55, pp. 744–746, 1977.
  32. T. Fang, S. Yao, J. Zhang, and A. Aziz, “Viscous flow over a shrinking sheet with a second order slip flow model,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1831–1842, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  33. B. Brighi and J.-D. Hoernel, “Similarity solutions for high frequency excitation of liquid metal in an antisymmetric magnetic field,” in Self-Similar Solutions of Nonlinear PDE, vol. 74, pp. 41–57, Polish Academy of Science, Warsaw, Poland, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  34. E. H. Aly, L. Elliott, and D. B. Ingham, “Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium,” European Journal of Mechanics B, vol. 22, no. 6, pp. 529–543, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  35. A. Ebaid, “An improvement on the exp-function method when balancing the highest order linear and nonlinear terms,” Journal of Mathematical Analysis and Applications, vol. 392, pp. 1–5, 2012.