About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 468980, 16 pages
http://dx.doi.org/10.1155/2012/468980
Research Article

Multiple Solutions for a Class of Fractional Boundary Value Problems

Department of Mathematics, Harbin Engineering University, Harbin 150001, China

Received 6 March 2012; Accepted 19 September 2012

Academic Editor: Yong H. Wu

Copyright © 2012 Ge Bin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Goreno and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, NY, USA, 1997.
  2. B. N. Lundstrom, M. H. Higgs, W. J. Spain, and A. L. Fairhall, “Fractional differentiation by neocortical pyramidal neurons,” Nature Neuroscience, vol. 11, no. 11, pp. 1335–1342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. W. G. Glockle and T. F. Nonnenmacher, “A fractional calculus approach to self-similar protein dynamics,” Biophysical Journal, vol. 68, no. 1, pp. 46–53, 1995. View at Scopus
  4. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation,” Water Resources Research, vol. 36, no. 6, pp. 1403–1412, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, Eds., pp. 291–348, Springer, Wien, Austria, 1997.
  7. J. W. Kirchner, X. Feng, and C. Neal, “Frail chemistry and its implications for contaminant transport in catchments,” Nature, vol. 403, no. 6769, pp. 524–527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, “Theory and applications of fractional differential equations,” in North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
  9. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, NY, USA, 1993.
  10. I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. View at Zentralblatt MATH
  11. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, Yverdon, Switzerland, 1993. View at Zentralblatt MATH
  12. S. Aizicovici, N. S. Papageorgiou, and V. Staicu, “Multiple nontrivial solutions for nonlinear periodic problems with the p-Laplacian,” Journal of Differential Equations, vol. 243, no. 2, pp. 504–535, 2007. View at Publisher · View at Google Scholar
  13. Z. B. Bai and H. S. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495–505, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. S. Q. Zhang, “Existence of solution for a boundary value problem of fractional order,” Acta Mathematica Scientia. Series B, vol. 26, no. 2, pp. 220–228, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. Z. B. Bai and Y. H. Zhang, “The existence of solutions for a fractional multi-point boundary value problem,” Computers & Mathematics with Applications, vol. 60, no. 8, pp. 2364–2372, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  16. W. H. Jiang, “The existence of solutions to boundary value problems of fractional differential equations at resonance,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 5, pp. 1987–1994, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. S. Q. Zhang, “Existence of a solution for the fractional differential equation with nonlinear boundary conditions,” Computers & Mathematics with Applications, vol. 61, no. 4, pp. 1202–1208, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. S. H. Liang and J. H. Zhang, “Positive solutions for boundary value problems of nonlinear fractional differential equation,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 11, pp. 5545–5550, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. X. Zhang, L. Liu, and Y. H. Wu, “The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives,” Applied Mathematics and Computation, vol. 218, pp. 8526–8536, 2012.
  20. X. Zhang, L. Liu, and Y. H. Wu, “Multiple positive solutions of a singular fractional differential equation with negatively perturbed term,” Mathematical and Computer Modelling, vol. 55, pp. 1263–1274, 2012.
  21. X. Zhang, L. Liu, B. Wiwatanapataphee, and Y. H. Wu, “Positive solutions of Eigenvalue problems for a class of fractional differential equations with derivatives,” Abstract and Applied Analysis, vol. 2012, Article ID 512127, 16 pages, 2012. View at Publisher · View at Google Scholar
  22. Y. Wang, L. Liu, and Y. Wu, “Positive solutions of a fractional boundary value problem with changing sign nonlinearity,” Abstract and Applied Analysis, vol. 2012, Article ID 149849, 12 pages, 2012. View at Publisher · View at Google Scholar
  23. Y. Wang, L. Liu, and Y. Wu, “Positive solutions for a nonlocal fractional differential equation,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 11, pp. 3599–3605, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. J. Jiang, L. Liu, and Y. H. Wu, “Multiple positive solutions of singular fractional differential system involving Stieltjes integral conditions,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 43, pp. 1–18, 2012.
  25. F. Jiao and Y. Zhou, “Existence of solutions for a class of fractional boundary value problems via critical point theory,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1181–1199, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. J. Chen and X. H. Tang, “Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory,” Abstract and Applied Analysis, vol. 2012, Article ID 648635, 21 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  27. A. Ambrosetti and P. H. Rabinowitz, “Dual variational methods in critical point theory and applications,” Journal of Functional Analysis, vol. 14, pp. 349–381, 1973. View at Zentralblatt MATH
  28. P. H. Rabinowitz, “Minimax methods in critical point theory with applications to differential equations,” in Proceedings of the CBMS, vol. 65, American Mathematical Society, 1986.
  29. F. Y. Li, Z. P. Liang, and Q. Zhang, “Existence of solutions to a class of nonlinear second order two-point boundary value problems,” Journal of Mathematical Analysis and Applications, vol. 312, pp. 357–373, 2005.