About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 520818, 12 pages
http://dx.doi.org/10.1155/2012/520818
Research Article

An Oseen Two-Level Stabilized Mixed Finite-Element Method for the 2D/3D Stationary Navier-Stokes Equations

1Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2School of Applied Science, Beijing Information Science and Technology University, Beijing 100192, China
3Graduate University of Chinese Academy of Sciences, Beijing 100049, China
4Departement of Geographical Science and Environmental Engineering, Baoji University of Arts and Sciences, Baoji 721007, China

Received 1 December 2011; Accepted 28 January 2012

Academic Editor: Shaher Momani

Copyright © 2012 Aiwen Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of Springer Series in Computational Mathematics, Springer, New York, NY, USA, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. Y. He, A. Wang, and L. Mei, “Stabilized finite-element method for the stationary Navier-Stokes equations,” Journal of Engineering Mathematics, vol. 51, no. 4, pp. 367–380, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  3. Y. He and W. Sun, “Stabilized finite element method based on the Crank-Nicolson extrapolation scheme for the time-dependent Navier-Stokes equations,” Mathematics of Computation, vol. 76, no. 257, pp. 115–136, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. J. Li and Y. He, “A stabilized finite element method based on two local Gauss integrations for the Stokes equations,” Journal of Computational and Applied Mathematics, vol. 214, no. 1, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. M. A. Behr, L. P. Franca, and T. E. Tezduyar, “Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows,” Computer Methods in Applied Mechanics and Engineering, vol. 104, no. 1, pp. 31–48, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. J. Blasco and R. Codina, “Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier-Stokes equations,” Applied Numerical Mathematics, vol. 38, no. 4, pp. 475–497, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  7. R. Codina and J. Blasco, “Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations,” Numerische Mathematik, vol. 87, no. 1, pp. 59–81, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. J. Douglas, Jr. and J. P. Wang, “An absolutely stabilized finite element method for the Stokes problem,” Mathematics of Computation, vol. 52, no. 186, pp. 495–508, 1989. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. T. J. R. Hughes, L. P. Franca, and M. Balestra, “A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations,” Computer Methods in Applied Mechanics and Engineering, vol. 59, no. 1, pp. 85–99, 1986. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. T. J. R. Hughes and L. P. Franca, “A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces,” Computer Methods in Applied Mechanics and Engineering, vol. 65, no. 1, pp. 85–96, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. D. Kay and D. Silvester, “A posteriori error estimation for stabilized mixed approximations of the Stokes equations,” SIAM Journal on Scientific Computing, vol. 21, no. 4, pp. 1321–1336, 1999/00. View at Publisher · View at Google Scholar
  12. N. Kechkar and D. Silvester, “Analysis of locally stabilized mixed finite element methods for the Stokes problem,” Mathematics of Computation, vol. 58, no. 197, pp. 1–10, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. D. J. Silvester and N. Kechkar, “Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem,” Computer Methods in Applied Mechanics and Engineering, vol. 79, no. 1, pp. 71–86, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. P. B. Bochev, C. R. Dohrmann, and M. D. Gunzburger, “Stabilization of low-order mixed finite elements for the Stokes equations,” SIAM Journal on Numerical Analysis, vol. 44, no. 1, pp. 82–101, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  15. A. W. Wang, J. Li, and D. X. Xie, “Stabilization of the lowest-order mixed finite elements based on the local pressure projection for steady Navier-Stokes equations,” Chinese Journal of Engineering Mathematics, vol. 27, no. 2, pp. 249–257, 2010. View at Zentralblatt MATH
  16. J. Xu, “A novel two-grid method for semilinear elliptic equations,” SIAM Journal on Scientific Computing, vol. 15, no. 1, pp. 231–237, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. J. Xu, “Two-grid discretization techniques for linear and nonlinear PDEs,” SIAM Journal on Numerical Analysis, vol. 33, no. 5, pp. 1759–1777, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  18. W. Layton and L. Tobiska, “A two-level method with backtracking for the Navier-Stokes equations,” SIAM Journal on Numerical Analysis, vol. 35, no. 5, pp. 2035–2054, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  19. W. Layton, “A two-level discretization method for the Navier-Stokes equations,” Computers & Mathematics with Applications, vol. 26, no. 2, pp. 33–38, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. W. Layton and W. Lenferink, “Two-level Picard and modified Picard methods for the Navier-Stokes equations,” Applied Mathematics and Computation, vol. 69, no. 2-3, pp. 263–274, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. Y. He and A. Wang, “A simplified two-level method for the steady Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 17-18, pp. 1568–1576, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. Y. He and K. Li, “Two-level stabilized finite element methods for the steady Navier-Stokes problem,” Computing, vol. 74, no. 4, pp. 337–351, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  23. Y. He, “Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations,” SIAM Journal on Numerical Analysis, vol. 41, no. 4, pp. 1263–1285, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. Y. N. He, “Two-level Methods based on three corrections for the 2D/3D steady Navier-Stokes equations,” International Journal of Numerical Analysis and Modeling, vol. 2, no. 1, pp. 42–56, 2011.
  25. J. Li, “Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations,” Applied Mathematics and Computation, vol. 182, no. 2, pp. 1470–1481, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  26. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, vol. 5 of Springer Series in Computational Mathematics, Springer, Berlin, Germany, 1986.
  27. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, vol. 2 of Studies in Mathematics and Its Applications, North-Holland, Amsterdam, The Netherlands, 1977.
  28. R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths, “The cause and cure of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. I,” International Journal for Numerical Methods in Fluids, vol. 1, no. 1, pp. 17–43, 1981. View at Publisher · View at Google Scholar
  29. J. Li, Z. X. Chen, and Y. He, “A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier-Stokes equations,” Numerische Mathematik. In press. View at Publisher · View at Google Scholar
  30. J. Li, Y. He, and H. Xu, “A multi-level stabilized finite element method for the stationary Navier-Stokes equations,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 29-30, pp. 2852–2862, 2007.