About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 589202, 14 pages
http://dx.doi.org/10.1155/2012/589202
Research Article

The Permanence and Extinction of the Single Species with Contraception Control and Feedback Controls

1Department of Applied Mathematics, Yuncheng University, Yuncheng 044000, China
2Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830051, China

Received 8 February 2012; Accepted 3 April 2012

Academic Editor: Elena Braverman

Copyright © 2012 Qiuying Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Jackson, D. J. Maguire, and L. A. Hinds, “Infertility in mice induced by a recombinant ectromelia virus expressing mouse zona pellucida glycoprotein,” Biology of Reproduction, vol. 58, pp. 152–159, 1998.
  2. A. T. Rutberga, R. E. Nauglea, et al., “Effects of immunocontraception on a suburban popu- lation of white-tailed deer Odocoileus virginianus,” Biological Conservation, vol. 116, pp. 243–250, 2004.
  3. F. Courchamp and S. J. Cornell, “Virus-vectored immunocontraception to control feral cats on islands: a mathematical model,” Journal of Applied Ecology, vol. 37, pp. 903–913, 2000.
  4. G. M. Hood, P. Chesson, and R. P. Pech, “Biological control using sterilizing viruses: host suppression and competition between viruses in non-spatial models,” Journal of Applied Ecology, vol. 37, pp. 914–925, 2000.
  5. Z. Zhang, “Mathematical models of wildlife management by contraception,” Ecological Modelling, vol. 132, pp. 105–113, 2000.
  6. H. Liu and Q. Li, “Model of single-species population under contraceptive control and lethal control,” Mathematics in Practice and Theory, vol. 39, no. 15, pp. 106–109, 2009.
  7. K. Gopalsamy and P. X. Weng, “Feedback regulation of logistic growth,” International Journal of Mathematics and Mathematical Sciences, vol. 16, no. 1, pp. 177–192, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. Z. Teng, “Persistence and stability in general nonautonomous single-species Kolmogorov systems with delays,” Nonlinear Analysis. Real World Applications, vol. 8, no. 1, pp. 230–248, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. H.-F. Huo and W.-T. Li, “Positive periodic solutions of a class of delay differential system with feedback control,” Applied Mathematics and Computation, vol. 148, no. 1, pp. 35–46, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. F. Yin and Y. Li, “Positive periodic solutions of a single species model with feedback regulation and distributed time delay,” Applied Mathematics and Computation, vol. 153, no. 2, pp. 475–484, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. K. Wang, Z. Teng, and H. Jiang, “On the permanence for n-species non-autonomous Lotka-Volterra competitive system with infinite delays and feedback controls,” International Journal of Biomathematics, vol. 1, no. 1, pp. 29–43, 2008. View at Publisher · View at Google Scholar
  12. F. Chen, J. Yang, L. Chen, and X. Xie, “On a mutualism model with feedback controls,” Applied Mathematics and Computation, vol. 214, no. 2, pp. 581–587, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  13. Z. Teng and Z. Li, “Permanence and asymptotic behavior of the N-species nonautonomous Lotka-Volterra competitive systems,” Computers and Mathematics with Applications, vol. 39, no. 7-8, pp. 107–116, 2000. View at Publisher · View at Google Scholar