About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 749683, 18 pages
http://dx.doi.org/10.1155/2012/749683
Research Article

Semilinear Parabolic Equations on the Heisenberg Group with a Singular Potential

1Laboratoire de Mathématiques Raphaël Salem, Université de Rouen, UMR 6085 CNRS, Avenue de l'Université, BP 12, 76801 Saint Etienne du Rouvray, France
2Laboratoire de Mathématiques Appliquées du Havre, Université du Havre, 25 rue Philippe Lebon, BP 540, 76058 Le Havre Cedex, France

Received 29 October 2011; Accepted 12 December 2011

Academic Editor: Shaher M. Momani

Copyright © 2012 Houda Mokrani and Fatimetou Mint Aghrabatt. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. B. Folland, “Subelliptic estimates and function spaces on nilpotent Lie groups,” Arkiv för Matematik, vol. 13, no. 2, pp. 161–207, 1975. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  2. D. Jerison and J. M. Lee, “Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem,” Journal of the American Mathematical Society, vol. 1, no. 1, pp. 1–13, 1988. View at Zentralblatt MATH
  3. L. D'Ambrosio, “Some Hardy inequalities on the Heisenberg group,” Differential Equations, vol. 40, no. 4, pp. 552–564, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  4. J. Dou, P. Niu, and Z. Yuan, “A Hardy inequality with remainder terms in the Heisenberg group and the weighted eigenvalue problem,” Journal of Inequalities and Applications, vol. 2007, Article ID 32585, 24 pages, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  5. N. I. Karachalios and N. B. Zographopoulos, “The semiflow of a reaction diffusion equation with a singular potential,” Manuscripta Mathematica, vol. 130, no. 1, pp. 63–91, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. J. M. Ball, “On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations,” Journal of Differential Equations, vol. 27, no. 2, pp. 224–265, 1978. View at Publisher · View at Google Scholar
  7. J. M. Ball, “Global attractors for damped semilinear wave equations,” Discrete and Continuous Dynamical Systems. Series A, vol. 10, no. 1-2, pp. 31–52, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. J. López-Gómez and M. Molina-Meyer, “Bounded components of positive solutions of abstract fixed point equations: mushrooms, loops and isolas,” Journal of Differential Equations, vol. 209, no. 2, pp. 416–441, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. H. Mokrani, “Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential,” Communications on Pure and Applied Analysis, vol. 8, no. 5, pp. 1619–1636, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  10. L. Capogna, D. Danielli, and N. Garofalo, “An embedding theorem and the Harnack inequality for nonlinear subelliptic equations,” Communications in Partial Differential Equations, vol. 18, no. 9-10, pp. 1765–1794, 1993. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. J.-M. Bony, “Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés,” Annales de l'Institut Fourier, vol. 19, pp. 277–304, 1969.
  12. I. Birindelli and A. Cutrì, “A semi-linear problem for the Heisenberg Laplacian,” Rendiconti del Seminario Matematico della Università di Padova, vol. 94, pp. 137–153, 1995.
  13. P. H. Rabinowitz, “Some global results for nonlinear eigenvalue problems,” vol. 7, pp. 487–513, 1971. View at Zentralblatt MATH
  14. E. N. Dancer, “Bifurcation from simple eigenvalues and eigenvalues of geometric multiplicity one,” The Bulletin of the London Mathematical Society, vol. 34, no. 5, pp. 533–538, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, vol. 426 of Chapman & Hall/CRC Research Notes in Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2001. View at Publisher · View at Google Scholar
  16. R. Ikehata and T. Suzuki, “Stable and unstable sets for evolution equations of parabolic and hyperbolic type,” Hiroshima Mathematical Journal, vol. 26, no. 3, pp. 475–491, 1996.
  17. L. E. Payne and D. H. Sattinger, “Saddle points and instability of nonlinrar parabolic equations,” Hiroshima Mathematical Journal, vol. 30, pp. 117–127, 2000.
  18. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences, Springer, New York, NY, USA, 1983.
  19. T. Cazenave and A. Haraux, Introduction aux Problèmes D'évolution Semi-Linéaires, vol. 1 of Mathématiques & Applications, Ellipses, Paris, France, 1990.
  20. J. K. Hale, Asymptotic behavior of dissipative systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, USA, 1988.
  21. M. Willem, Minimax Theorems, vol. 24 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston, Mass, USA, 1996.