Abstract

We study the solvability of Dirichlet and Neumann problems for different classes of nonlinear elliptic systems depending on parameters and with nonmonotone operators, using existence theorems related to a general system of variational equations in a reflexive Banach space. We also point out some regularity properties and the sign of the found solutions components. We often prove the existence of at least two different solutions with positive components.

1. Introduction

In this paper, we present some significant applications of the results got in [1] to Dirichlet problems (Section 2) of the type: ξ€·π΄βˆ’div𝑖π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έξ€Έ=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+𝑑𝑖π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έ+𝑓𝑖𝑒inΞ©,𝑖=0onπœ•Ξ©as𝑖=1,…,𝑛,(1.1) and to Neumann problems (Section 3) of the type: ξ€·π΄βˆ’div𝑖π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έξ€Έ=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+𝑑𝑖π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έ+𝑓𝑖𝐴inΞ©,𝑖π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έβ‹…πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+𝑑𝑖π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έ+𝑓𝑖onπœ•Ξ©as𝑖=1,…,𝑛,(1.2) where 𝑛β‰₯1,πœ†π‘–,πœ‡π‘– are real parameters, Ξ© is a bounded connected open set of 𝑅𝑁 with regular boundary πœ•Ξ©, and 𝜈 is the outward orthogonal unitary vector to πœ•Ξ©.

The study deals with the solvability of the problems, the existence of multiple solutions with all the components not identically equal to zero and, in the homogeneous case, the existence of solutions with positive components, bounded and locally HΓΆlderian with their first derivatives. It is suitable to recall the problem studied in [1] with some notations and hypotheses.

Let π‘Š1,…,π‘Šπ‘› real reflexive Banach spaces (𝑛β‰₯1). Let π‘Š be the product space 𝑋𝑛ℓ=1π‘Šβ„“. Let β€–β‹…β€– be the norm on π‘Š, β€–β‹…β€–βˆ— the norm on π‘Šβˆ— (dual space of π‘Š), and βŸ¨β‹…,β‹…βŸ©β„“ (resp.βŸ¨βŸ¨β‹…,β‹…βŸ©βŸ©) the duality between π‘Šβˆ—β„“ (dual space of π‘Šβ„“) and π‘Šβ„“ (resp. π‘Šβˆ— and π‘Š). Let us denote by β€œπœ•β€ FrΓ©chet differential operator and by β€œπœ•π‘’β„“β€ FrΓ©chet differential operator with respect to 𝑒ℓ. Let 𝐴≒0 and 𝐷𝑗≒0(𝑗=1,…,π‘š;π‘šβ‰₯1) be real functionals defined in π‘Š,𝐡ℓ and 𝐡ℓ(β„“=1,…,𝑛) real functionals defined in π‘Šβ„“ satisfying the conditions:(𝑖11)𝐴 is lower weakly semicontinuous in π‘Š and 𝐢1(π‘Šβ§΅{0}),𝐡ℓ𝐡andβ„“ are weakly continuous in π‘Šβ„“ and𝐢1(π‘Šβ„“),βˆƒπ‘>1∢𝐴(𝑑𝑣)=𝑑𝑝𝐴(𝑣)forall𝑑β‰₯0and forallπ‘£βˆˆπ‘Š,𝐡ℓ(𝑑𝑣ℓ)=𝑑𝑝𝐡ℓ(𝑣ℓ) and 𝐡ℓ(𝑑𝑣ℓ)=𝑑𝑝𝐡ℓ(𝑣ℓ)forall𝑑β‰₯0 andforallπ‘£β„“βˆˆπ‘Šβ„“;(𝑖12)𝐷𝑗 is weakly continuous in π‘Š and 𝐢1(π‘Šβ§΅{0}),βˆƒπ‘žπ‘—>1βˆΆπ·π‘—(𝑑𝑣)=π‘‘π‘žπ‘—π·π‘—(𝑣)forall𝑑β‰₯0 and forallπ‘£βˆˆπ‘Š,1<π‘ž1<β‹―<π‘žπ‘šifπ‘š>1.

Let𝐹=(𝐹1,…,𝐹𝑛)with πΉβ„“βˆˆπ‘Šβ„“βˆ—,πœ†β„“andπœ‡β„“βˆˆπ‘…; let us consider the following problem.

Problem (𝑃). Find 𝑒=(𝑒1,…,𝑒𝑛)βˆˆπ‘Šβ§΅{0}such that ξ«πœ•π‘’π‘–π΄(𝑒),𝑣𝑖𝑖=πœ†π‘–ξ«πœ•π΅π‘–ξ€·π‘’π‘–ξ€Έ,𝑣𝑖𝑖+πœ‡π‘–ξ‚¬πœ•ξπ΅π‘–ξ€·π‘’π‘–ξ€Έ,𝑣𝑖𝑖+π‘šξ“π‘—=1ξ«πœ•π‘’π‘–π·π‘—(𝑒),𝑣𝑖𝑖+βŸ¨πΉπ‘–,π‘£π‘–βŸ©π‘–βˆ€π‘–βˆˆ{1,…,𝑛},βˆ€π‘£π‘–βˆˆπ‘Šπ‘–.(1.3) Obviously Problem (P) means to find the critical points π‘’βˆˆπ‘Šβ§΅{0} of the Euler functional: 𝐸(𝑣)=𝐴(𝑣)βˆ’π‘›ξ“β„“=1ξ‚ƒπœ†β„“π΅β„“ξ€·π‘£β„“ξ€Έ+πœ‡β„“ξπ΅β„“ξ€·π‘£β„“ξ€Έξ‚„βˆ’π‘šξ“π‘—=1𝐷𝑗𝑣(𝑣)βˆ’βŸ¨βŸ¨πΉ,π‘£βŸ©βŸ©βˆ€π‘£=1,…,π‘£π‘›ξ€Έβˆˆπ‘Š,(1.4) where βˆ‘βŸ¨βŸ¨πΉ,π‘£βŸ©βŸ©=𝑛ℓ=1βŸ¨πΉβ„“,π‘£β„“βŸ©β„“.

Let us set π»πœ†πœ‡(𝑣)=𝐴(𝑣)βˆ’π‘›ξ“β„“=1ξ‚ƒπœ†β„“π΅β„“ξ€·π‘£β„“ξ€Έ+πœ‡β„“ξπ΅β„“ξ€·π‘£β„“ξ€Έξ‚„ξ€·π‘£βˆ€π‘£=1,…,π‘£π‘›ξ€Έξ€·πœ†βˆˆπ‘Š,βˆ€πœ†=1,…,πœ†π‘›ξ€Έξ€·πœ‡,πœ‡=1,…,πœ‡π‘›ξ€Έβˆˆπ‘…π‘›,π‘†πœ†πœ‡=ξ€½π‘£βˆˆπ‘ŠβˆΆπ»πœ†πœ‡ξ€Ύ(𝑣)=1,π‘‰βˆ’πœ†πœ‡=ξ€½π‘£βˆˆπ‘ŠβˆΆπ»πœ†πœ‡ξ€Ύ(𝑣)<0,asπ‘š1𝑉=1,…,π‘š+ξ€·π·π‘š1,…,π·π‘šξ€Έ=ξƒ―π‘£βˆˆπ‘ŠβˆΆπ‘šξ“π‘—=π‘š1𝐷𝑗,𝑆(𝑣)>0+𝐷1,…,π·π‘šξ€Έ=ξƒ―π‘£βˆˆπ‘ŠβˆΆπ‘šξ“π‘—=1𝐷𝑗,𝑆𝐷(𝑣)=1𝑗=ξ€½π‘£βˆˆπ‘ŠβˆΆπ·π‘—(𝑣)=βˆ’1,𝑉+(𝐹)={π‘£βˆˆπ‘ŠβˆΆβŸ¨βŸ¨πΉ,π‘£βŸ©βŸ©>0}.(1.5) About Problem (P), using Lagrange multipliers and the β€œfibering method,” different existence theorems have been proved in [1]. They base on one of the following hypotheses: (𝑖13)βˆƒπ‘(πœ†,πœ‡)>0βˆΆβ€–π‘£β€–π‘β‰€π‘(πœ†,πœ‡)π»πœ†πœ‡(𝑣)forallπ‘£βˆˆπ‘Š; (𝑖14)βˆƒπ‘(πœ†,πœ‡)>0βˆΆβ€–π‘£β€–π‘β‰€π‘(πœ†,πœ‡)π»πœ†πœ‡(𝑣)forallπ‘£βˆˆπ‘‰+(π·π‘š)(if𝑉+(π·π‘š)β‰ βˆ…); (𝑖15)βˆƒπ‘š1∈{1,…,π‘š}βˆΆπ‘‰βˆ’πœ†πœ‡βˆ©π‘†(π·π‘š1) is not empty and bounded in W.

Remark 1.1. In this paper, we use some existence theorems ([1], Theorems 2.1, 2.2, 3.1, and 3.2), in which as 𝑛>1, in relation to a set π”‰βŠ†π‘†πœ†πœ‡, we suppose(π‘–β„Ž16) for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ”‰ with π‘£β„Ž=0, there exist π‘£β„Žβˆˆπ‘Šβ„Žβ§΅{0} and the real functions πœ™1,…,πœ™π‘› such that πœ™β„ŽβˆˆπΆ0([0,1])∩𝐢1([0,1[) and πœ™β„Ž(1)=0, πœ™β„“βˆˆπΆ1([0,1]) and πœ™β„“(1)=1 as β„“β‰ β„Ž, 𝑣(𝑠)=(πœ™1(𝑠)𝑣1,…,πœ™β„Ž(𝑠)π‘£β„Ž,…,πœ™π‘›(𝑠)𝑣𝑛)βˆˆπ”‰ for all π‘ βˆˆ[𝑠0,1](0≀𝑠0<1), limξ…žξ…žπ‘ β†’1βˆ’(𝑑/𝑑𝑠)𝐷𝑗(𝑣(𝑠))<+∞ for all π‘—βˆˆ{1,…,π‘š}, lim𝑠→1βˆ’(𝑑/𝑑𝑠)𝐷𝑗(𝑣(𝑠))=βˆ’βˆž for some π‘—βˆˆ{1,…,π‘š}.
The condition (π‘–β„Ž16) assures that for the solutions 𝑒=(𝑒1,…,𝑒𝑛) of Problem (P), found with the method used in the recalled theorems, we have π‘’β„Žβ‰ 0 if πΉβ„Žβ‰‘0.

Before showing Dirichlet problems (including the problem studied in [2] by DrΓ‘bek and Pohozaev when 𝑛=1 and π‘š=1) we give Propositions 2.2–2.6 which show some cases in which hypotheses (𝑖13)βˆ’(𝑖15) hold. These propositions are based on the comparison between the parameters πœ†π‘– with suitable eigenvalues connected to 𝑝-Laplacian. About Neumann problems (including the one studied in [3] by Pohozaev and VΓ©ron when 𝑛=1) the same question is solved by Propositions 3.1–3.5 in which the parameters πœ†π‘– and πœ‡π‘– have compared with zero. Finally, the results in Appendix are very useful: Propositions A.1 and A.2 in order to get condition (π‘–β„Ž16), Propositions A.3 and A.4 to get qualitative properties of the solutions and the positive sign of the components of the found solutions.

2. Dirichlet Problems

Let Ξ©βŠ†π‘…π‘ be an open, bounded, connected and 𝐢2,𝛽 set with 0<𝛽≀1. Let|β‹…|𝑁 the Lebesgue measure on 𝑅𝑁,1<𝑝<∞,̃𝑝=𝑁𝑝/(π‘βˆ’π‘)if𝑁>𝑝,̃𝑝=∞otherwise.

Let us assumeξ‚€π‘Šπ‘Š=01,𝑝(Ξ©)𝑛(𝑛β‰₯1)with‖𝑣‖=𝑛ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝ξƒͺ𝑑π‘₯1/π‘ξ€·π‘£βˆ€π‘£=1,…,π‘£π‘›ξ€Έπ΅βˆˆπ‘Š,ℓ𝑣ℓ=π‘βˆ’1ξ€œΞ©π‘β„“||𝑣ℓ||𝑝𝑑π‘₯βˆ€π‘£β„“βˆˆπ‘Š01,𝑝(Ξ©)whereπ‘β„“βˆˆπΏβˆž(Ξ©)⧡{0},𝑏ℓ𝐡β‰₯0,ℓ≑0.(2.1) Moreover we consider the functionals 𝐴 (as in (𝑖11)) such thatβˆƒΜƒπ‘>0∢𝐴(𝑣)β‰₯π‘βˆ’1Μƒπ‘β€–π‘£β€–π‘βˆ€π‘£βˆˆπ‘Š.(2.2) Let us use the notation π»πœ†(π‘†πœ†andπ‘‰βˆ’πœ†,resp.) instead of π»πœ†πœ‡(π‘†πœ†πœ‡andπ‘‰βˆ’πœ†πœ‡,resp.).

As β„“=1,…,𝑛 let πœ†βˆ—β„“andπ‘’βˆ—β„“, respectively, the first eigenvalue and the first eigenfunction of the problem: π‘’β„“βˆˆπ‘Š01,𝑝||(Ξ©)βˆΆβˆ’Μƒπ‘divβˆ‡π‘’β„“||π‘βˆ’2βˆ‡π‘’β„“ξ‚=πœƒπ‘β„“||𝑒ℓ||π‘βˆ’2𝑒ℓinΞ©.(2.3) Let us remember that [4]π‘’βˆ—β„“βˆˆπΆ1,𝛼ℓ(Ξ©) with 0<𝛼ℓ<1,π‘’βˆ—β„“>0 in Ξ©;πœ†βˆ—β„“βˆ«=̃𝑐Ω|βˆ‡π‘’βˆ—β„“|π‘βˆ«π‘‘π‘₯/Ω𝑏ℓ|π‘’βˆ—β„“|π‘βˆ«π‘‘π‘₯=min{̃𝑐Ω|βˆ‡π‘£β„“|π‘βˆ«π‘‘π‘₯/Ω𝑏ℓ|𝑣ℓ|π‘βˆ«π‘‘π‘₯βˆΆΞ©π‘β„“|𝑣ℓ|𝑝𝑑π‘₯>0};πœ†βˆ—β„“ is simple, that is, each eigenfunction of (2.3) related to πœ†βˆ—β„“ is of the type π‘β„“π‘’βˆ—β„“ with π‘β„“βˆˆπ‘…β§΅{0};πœ†βˆ—β„“ is isolate, that is, there exists π‘Ž>0 such that πœ†βˆ—β„“ is the only eigenvalue of (2.3) belonging to ]0,π‘Ž[.

Remark 2.1. About the results related to problem (2.3), it is sufficient to suppose π‘β„“βˆˆπΏβˆž(Ξ©) and 𝑏+β„“=max{𝑏ℓ,0}β‰’0 as β„“=1,…,𝑛. This holds also for the results of this section if we limit to consider only the parameters πœ†1,…,πœ†π‘› nonnegative.

Let us start by presenting some sufficient conditions such that (𝑖13),(𝑖14), and (𝑖15) hold.

Using the variational characterization of πœ†βˆ—β„“ it is easy to verify the following proposition.

Proposition 2.2. If πœ†β„“<πœ†βˆ—β„“forallβ„“βˆˆ{1,…,𝑛}, then (𝑖13) holds. Consequently, (𝑖14) holds when 𝑉+(π·π‘š)β‰ βˆ….

When πœ†β„“β‰₯πœ†βˆ—β„“β€‰β€‰for some β„“βˆˆ{1,…,𝑛}, it is possible to fulfil (𝑖14) with an additional condition on π·π‘š. Let 𝐼={1,…,𝑛}. For any πΌβˆ—βŠ†πΌ let π‘‰βˆ—=𝑣𝑣=1,…,π‘£π‘›ξ€Έβˆˆπ‘ŠβˆΆπ‘£β„“β‰‘0ifβ„“βˆˆπΌβ§΅πΌβˆ—,𝑣ℓ=π‘β„“π‘’βˆ—β„“ifβ„“βˆˆπΌβˆ—withπ‘β„“βˆˆπ‘…and𝑐ℓ,β‰ 0forsomeβ„“(2.4) and let us suppose(𝑖21) There exists πΌβˆ—βŠ†πΌβˆΆπ·π‘š(𝑣)<0forallπ‘£βˆˆπ‘‰βˆ—.

Proposition 2.3. Let (𝑖21) holds with πΌβˆ—β‰ πΌ. Let 𝑉+(π·π‘š)β‰ βˆ…. If we fix the parameters set (πœ†β„“)β„“βˆˆπΌβ§΅πΌβˆ— with πœ†β„“<πœ†βˆ—β„“, then there exists π›Ώβˆ—>0 such that (𝑖14) also holds for any (πœ†β„“)β„“βˆˆπΌβˆ—βˆˆπ‘‹β„“βˆˆπΌβˆ—[πœ†βˆ—β„“,πœ†βˆ—β„“+π›Ώβˆ—[.

Proof. Arguing by contradiction, for any π‘˜βˆˆβ„• there exist (πœ†π‘˜β„“)β„“βˆˆπΌβˆ—βˆˆπ‘‹β„“βˆˆπΌβˆ—[πœ†βˆ—β„“,πœ†βˆ—β„“+π‘˜βˆ’1[ and π‘£π‘˜=(π‘£π‘˜1,…,π‘£π‘˜π‘›)βˆˆπ‘‰+(π·π‘š) such that π΄ξ€·π‘£π‘˜ξ€Έβˆ’π‘βˆ’1ξ“β„“βˆˆπΌβ§΅πΌβˆ—πœ†β„“ξ€œΞ©π‘β„“||𝑣ℓ||𝑝𝑑π‘₯βˆ’π‘βˆ’1ξ“β„“βˆˆπΌβˆ—πœ†π‘˜β„“ξ€œΞ©π‘β„“||π‘£π‘˜β„“||𝑝𝑑π‘₯<π‘˜βˆ’1β€–β€–π‘£π‘˜β€–β€–π‘.(2.5) Set π‘€π‘˜=β€–π‘£π‘˜β€–βˆ’1π‘£π‘˜, we have π·π‘šξ€·π‘€π‘˜ξ€Έξ“>0,Μƒπ‘β„“βˆˆπΌβ§΅πΌβˆ—ξ€œΞ©||βˆ‡π‘€π‘˜β„“||𝑝𝑑π‘₯βˆ’β„“βˆˆπΌβ§΅πΌβˆ—πœ†β„“ξ€œΞ©π‘β„“||π‘€π‘˜β„“||𝑝𝑑π‘₯+Μƒπ‘β„“βˆˆπΌβˆ—ξ€œΞ©||βˆ‡π‘€π‘˜β„“||𝑝𝑑π‘₯βˆ’β„“βˆˆπΌβˆ—πœ†π‘˜β„“ξ€œΞ©π‘β„“||π‘€π‘˜β„“||𝑝𝑑π‘₯<π‘π‘˜βˆ’1,(2.6) moreover, since β€–π‘€π‘˜β€–=1, there exists π‘€βˆˆπ‘Š such that (within a subsequence) π‘€π‘˜βŸΆπ‘€weaklyinπ‘Š,π‘€π‘˜βŸΆπ‘€stronglyin(𝐿𝑝(Ξ©))𝑛.(2.7) Taking into account that π·π‘š is weakly continuous in π‘Š, from (2.6) as π‘˜β†’+∞ we get π·π‘šξ“(𝑀)β‰₯0,(2.8)β„“βˆˆπΌβ§΅πΌβˆ—ξ‚Έξ€œΜƒπ‘Ξ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯βˆ’πœ†β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝+𝑑π‘₯β„“βˆˆπΌβˆ—ξ‚Έξ€œΜƒπ‘Ξ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯βˆ’πœ†βˆ—β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝𝑑π‘₯≀0.(2.9) Since π‘€β„“ξ€œβ‰’0βŸΉΜƒπ‘Ξ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯βˆ’πœ†β„“ξ€œΞ©π‘β„“||𝑀ℓ||π‘ξ€œπ‘‘π‘₯>0,̃𝑐Ω||βˆ‡π‘€β„“||𝑝𝑑π‘₯βˆ’πœ†βˆ—β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝𝑑π‘₯β‰₯0,(2.10) from (2.9), we deduce that 𝑀ℓ≑0βˆ€β„“βˆˆπΌβ§΅πΌβˆ—,βˆ€β„“βˆˆπΌβˆ—βˆƒπ‘β„“βˆˆπ‘…βˆΆπ‘€β„“=π‘β„“π‘’βˆ—β„“.(2.11) Let us add that𝑐ℓ≠0 for some β„“βˆˆπΌβˆ—, since if 𝑐ℓ=0forallβ„“βˆˆπΌβˆ— we have the contradiction ̃𝑐=̃𝑐limπ‘˜β†’+βˆžβ€–π‘€π‘˜β€–π‘=0. Then π‘€βˆˆπ‘‰βˆ—, and consequently π·π‘š(𝑀)<0 from (𝑖21). This last inequality contradicts (2.8).

In the same way the following propositions can be proved.

Proposition 2.4. Let (𝑖21) holds with πΌβˆ—=𝐼. Let 𝑉+(π·π‘š)β‰ βˆ…. Then, there exists π›Ώβˆ—>0 such that (i14) also holds for any (πœ†β„“)β„“βˆˆπΌβˆˆπ‘‹β„“βˆˆπΌ[πœ†βˆ—β„“,πœ†βˆ—β„“+π›Ώβˆ—[.

Let us pass to (𝑖15) and suppose(𝑖22) there existπΌβˆ—βŠ†πΌ and π‘š1∈{1,…,π‘š}such thatπ·π‘š1(𝑣)<0and𝐴(𝑣)=Μƒπ‘π‘βˆ’1βˆ‘β„“βˆˆπΌβˆ—βˆ«Ξ©|βˆ‡π‘£β„“|𝑝𝑑π‘₯ for any π‘£βˆˆπ‘‰βˆ—.

Proposition 2.5. If (i22) holds withπΌβˆ—β‰ πΌ, then π‘‰βˆ’πœ†ξ€·π·βˆ©π‘†π‘š1ξ€Έξ€·πœ†β‰ βˆ…βˆ€β„“ξ€Έβ„“βˆˆπΌξ€·πœ†withβ„“ξ€Έβ„“βˆˆπΌβˆ—βˆˆπ‘‹β„“βˆˆπΌβˆ—ξ€Ίπœ†βˆ—β„“ξ€Ίβ§΅πœ†,+βˆžξ€½ξ€·βˆ—β„“ξ€Έβ„“βˆˆπΌβˆ—ξ€Ύ.(2.12) Moreover, if we fix the parameters set (πœ†β„“)β„“βˆˆπΌβ§΅πΌβˆ— with πœ†β„“<πœ†βˆ—β„“, then there exists π›Ώβˆ—>0 such that π‘‰βˆ’πœ†ξ€·π·βˆ©π‘†π‘š1ξ€Έξ€·πœ†isboundedinπ‘Šβˆ€β„“ξ€Έβ„“βˆˆπΌβˆ—βˆˆπ‘‹β„“βˆˆπΌβˆ—ξ€Ίπœ†βˆ—β„“,πœ†βˆ—β„“+π›Ώβˆ—ξ€Ίβ§΅πœ†ξ€½ξ€·βˆ—β„“ξ€Έβ„“βˆˆπΌβˆ—ξ€Ύ.(2.13)

Proof. Let us prove (2.12). Let π‘£βˆˆπ‘‰βˆ—with 𝑣ℓ=π‘’βˆ—β„“if β„“βˆˆπΌβˆ—, then π·π‘š1(𝑣)<0. Let 𝑀=|π·π‘š1(𝑣)|βˆ’1β§΅π‘žπ‘š1𝑣, we have π·π‘š1||𝐷(𝑀)=π‘š1||(𝑣)βˆ’1π·π‘š1𝐻(𝑣)=βˆ’1,πœ†(𝑀)=π‘βˆ’1ξ“β„“βˆˆπΌβˆ—ξ‚Έξ€œΜƒπ‘Ξ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯βˆ’πœ†β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝𝑑π‘₯<0.(2.14) Let us prove (2.13). Arguing by contradiction, for any π‘˜βˆˆβ„• there exist (πœ†π‘˜β„“)β„“βˆˆπΌβˆ—βˆˆπ‘‹β„“βˆˆπΌβˆ—[πœ†βˆ—β„“,πœ†βˆ—β„“+π‘˜βˆ’1[ with (πœ†π‘˜β„“)β„“βˆˆπΌβˆ—β‰ (πœ†βˆ—β„“)β„“βˆˆπΌβˆ— and (π‘£π‘˜,β„Ž)β„Žβˆˆβ„•βŠ†π‘‰βˆ’πœ†π‘˜βˆ©π‘†(π·π‘š1), where πœ†π‘˜β„“=πœ†β„“ if β„“βˆˆπΌβ§΅πΌβˆ—, such that supβ„Žβˆˆβ„•β€–β€–π‘£π‘˜,β„Žβ€–β€–=+∞.(2.15) Relation (2.15) implies that there exists (β„Žπ‘˜)π‘˜βˆˆβ„•βŠ†β„• strictly increasing such that π›Ώπ‘˜=β€–β€–π‘£π‘˜,β„Žπ‘˜β€–β€–βŸΆ+∞asπ‘˜βŸΆ+∞.(2.16) Let π‘€π‘˜=π›Ώπ‘˜βˆ’1π‘£π‘˜,β„Žπ‘˜, we have ξ“β„“βˆˆπΌβ§΅πΌβˆ—ξ‚Έξ€œΜƒπ‘Ξ©||βˆ‡π‘€π‘˜β„“||𝑝𝑑π‘₯βˆ’πœ†β„“ξ€œΞ©π‘β„“||π‘€π‘˜β„“||𝑝+𝑑π‘₯β„“βˆˆπΌβˆ—ξ‚Έξ€œΜƒπ‘Ξ©||βˆ‡π‘€π‘˜β„“||𝑝𝑑π‘₯βˆ’πœ†π‘˜β„“ξ€œΞ©π‘β„“||π‘€π‘˜||𝑝𝐷𝑑π‘₯<0,π‘š1ξ€·π‘€π‘˜ξ€Έ=βˆ’π›Ώβˆ’π‘žπ‘š1π‘˜,βˆƒπ‘€βˆˆπ‘ŠβˆΆ(withinasubsequence)π‘€π‘˜βŸΆπ‘€weaklyinπ‘Š,π‘€π‘˜βŸΆπ‘€stronglyin(𝐿𝑝(Ξ©))𝑛.(2.17) Then, as π‘˜β†’+∞ we get ξ“β„“βˆˆπΌβ§΅πΌβˆ—ξ‚Έξ€œΜƒπ‘Ξ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯βˆ’πœ†β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝+𝑑π‘₯β„“βˆˆπΌβˆ—ξ‚Έξ€œΜƒπ‘Ξ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯βˆ’πœ†βˆ—β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝𝐷𝑑π‘₯≀0,(2.18)π‘š1(𝑀)=0.(2.19) From (2.18), we get that π‘€βˆˆπ‘‰βˆ—. Then since (𝑖22) inequality π·π‘š1(𝑀)<0 holds, which contradicts (2.19).

Proposition 2.6. If (𝑖22) holds with πΌβˆ—=𝐼, then π‘‰βˆ’πœ†ξ€·π·βˆ©π‘†π‘š1ξ€Έξ€·πœ†β‰ βˆ…βˆ€πœ†=β„“ξ€Έβ„“βˆˆπΌβˆˆπ‘‹β„“βˆˆπΌξ€Ίπœ†βˆ—β„“ξ€Ίβ§΅πœ†,+βˆžξ€½ξ€·βˆ—β„“ξ€Έβ„“βˆˆπΌξ€Ύ,βˆƒπ›Ώβˆ—>0βˆΆπ‘‰βˆ’πœ†ξ€·π·βˆ©π‘†π‘š1ξ€Έξ€·πœ†isboundedinπ‘Šβˆ€πœ†=β„“ξ€Έβ„“βˆˆπΌβˆˆπ‘‹β„“βˆˆπΌξ€Ίπœ†βˆ—β„“,πœ†βˆ—β„“+π›Ώβˆ—ξ€Ίβ§΅πœ†ξ€½ξ€·βˆ—β„“ξ€Έβ„“βˆˆπΌξ€Ύ.(2.20)
The proof as in Proposition 2.5.

Remark 2.7. The applications we now show, except the first one, deal with systems with 𝑛>1 equations. We consider the functionals 𝐴 with ̃𝑐=1, and we suppose π‘β„“βˆˆπΏβˆž(Ξ©)⧡{0},𝑏ℓβ‰₯0.

Application 2.8. Let 𝑛=1. Let us consider the problem ξ‚€||||βˆ’divβˆ‡π‘’π‘βˆ’2ξ‚βˆ‡π‘’=πœ†1𝑏1|𝑒|π‘βˆ’2𝑒+π‘šξ“π‘—=1𝑑𝑗|𝑒|π‘žπ‘—βˆ’2𝑒inΞ©,𝑒=0onπœ•Ξ©,(2.21) where 𝑝<π‘ž1<̃𝑝,𝑑1∈𝐿∞(Ξ©)⧡{0}ifπ‘š=1,𝑝<π‘ž1<β‹―<π‘žπ‘š<̃𝑝,π‘‘π‘—βˆˆπΏβˆžπ‘‘(Ξ©)⧡{0}as𝑗=1,…,π‘š,𝑗≀0as𝑗=1,…,π‘šβˆ’1ifπ‘š>1.(2.22) Evidently 𝐴(𝑣)=π‘βˆ’1ξ€œΞ©||||βˆ‡π‘£π‘π‘‘π‘₯,𝐷𝑗(𝑣)=π‘žπ‘—βˆ’1ξ€œΞ©π‘‘π‘—|𝑣|π‘žπ‘—π‘‘π‘₯βˆ€π‘£βˆˆπ‘Š.(2.23) Let us advance the conditions: 𝑑+π‘šξ€·β‰’0βŸΉπ‘‰+ξ€·π·π‘šξ€Έξ€Έξ€œβ‰ βˆ…,(2.24)Ξ©π‘‘π‘šξ€·π‘’βˆ—1ξ€Έπ‘žπ‘šξ€·π‘‘π‘₯<0βŸΉπ·π‘šξ€·π‘1π‘’βˆ—1ξ€Έ<0βˆ€π‘1ξ€Έ.βˆˆπ‘…β§΅{0}(2.25) Let us note that (Propositions 2.2, 2.4, and 2.6) 𝑖(2.24)βŸΉξ€·ξ€·14ξ€Έholdsifπœ†1<πœ†βˆ—1ξ€Έ,(ξ€·2.24)and(2.25)βŸΉβˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έholdsifπœ†1<πœ†βˆ—1+π›Ώβˆ—1ξ€Έ,ξ€·(2.25)βŸΉβˆƒπ›Ώβˆ—2𝑖>0∢15ξ€Έholdsifπœ†1βˆˆξ€»πœ†βˆ—1,πœ†βˆ—1+π›Ώβˆ—2.ξ€Ίξ€Έ(2.26)

Proposition 2.9 (see [1], Theorems 2.1, 2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4; Proposition A.3; [5, 6]). Under assumptions (2.22) we have:(i)When (2.24) holds, with πœ†1<πœ†βˆ—1 [resp. (2.24) and (2.25) hold, with πœ†1<πœ†βˆ—1+π›Ώβˆ—1] problem (2.21) has at least two weak solutions 𝑒0 andβˆ’π‘’0(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†1βˆ©π‘‰+(π·π‘š)), and it results in 𝑒0∈𝐿∞(Ξ©)∩𝐢1,𝛼0β„“π‘œπ‘(Ξ©),𝑒0>0;(ii)When (2.25) holds, with πœ†1∈]πœ†βˆ—1,πœ†βˆ—1+π›Ώβˆ—2[ problem (2.21) has at least two weak solutions π‘’π‘Žπ‘›π‘‘βˆ’π‘’(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†1βˆ©π‘†(π·π‘š)), and it results in π‘’βˆˆπΏβˆž(Ξ©)∩𝐢1,π›Όβ„“π‘œπ‘(Ξ©),𝑒>0.
Consequently, when (2.24) and (2.25) hold, with πœ†1∈]πœ†βˆ—1,πœ†βˆ—1+min{π›Ώβˆ—1,π›Ώβˆ—2}[ problem (2.21) has at least four different weak solutions.

Remark 2.10. Our results include the ones of DrΓ‘bek and Pohozaev [2] when π‘š=1.

Application 2.11. Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+|||||𝑛ℓ=1𝑑ℓ𝑒ℓ|||||π‘ž1βˆ’2𝑛ℓ=1𝑑ℓ𝑒ℓξƒͺπ‘‘π‘–βˆ’ξ‚π‘‘π‘–||𝑒𝑖||π‘ž1βˆ’2𝑒𝑖𝑒inΞ©,𝑖=0onπœ•Ξ©as𝑖=1,…,𝑛,(2.27) where 1<π‘ž1<̃𝑝,π‘ž1≠𝑝,𝑑ℓ,ξ‚π‘‘β„“βˆˆπΏβˆž(Ξ©),𝑑ℓ,𝑑ℓ>0.(2.28) System (2.27) is included among Problem (P) with: 𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝐷𝑑π‘₯,1(𝑣)=π‘ž1βˆ’1βŽ‘βŽ’βŽ’βŽ£ξ€œΞ©|||||𝑛ℓ=1𝑑ℓ𝑣ℓ|||||π‘ž1𝑑π‘₯βˆ’π‘›ξ“β„“=1ξ€œΞ©ξ‚π‘‘β„“||𝑣ℓ||π‘ž1⎀βŽ₯βŽ₯βŽ¦ξ€·π‘£π‘‘π‘₯βˆ€π‘£=1,…,π‘£π‘›ξ€Έβˆˆπ‘Š.(2.29) Let us advance the conditions (compatible): π‘‘π‘ž1β„“<ξ‚π‘‘β„“ξ€·βˆ€β„“βˆˆ{1,…,𝑛}⟹𝐷1ξ€·0,…,π‘π‘–π‘’βˆ—π‘–ξ€Έ,…,0<0as𝑖=1,…,𝑛,π‘π‘–ξ€Έβˆˆπ‘…β§΅{0},(2.30) there exist Ξ©+βŠ†Ξ© and a constant ̃𝑐𝑗>0 such that |Ξ©+|𝑁>0 and ℓ≠𝑗𝑑ℓ+̃𝑐𝑗𝑑𝑗ξƒͺπ‘ž1>ℓ≠𝑗𝑑ℓ+Μƒπ‘π‘ž1𝑗𝑑𝑗inΞ©+ξ€·βŸΉπ‘‰+𝐷1ξ€Έξ€Έ.β‰ βˆ…(PropositionA.1)(2.31) Then (Propositions 2.2, 2.3, and 2.5) 𝑖(2.31)βŸΉξ€·ξ€·14ξ€Έholdsifπœ†β„“<πœ†βˆ—β„“ξ€Έβˆ€β„“βˆˆ{1,…,𝑛},(2.32) and set π‘–βˆˆ{1,…,𝑛}ξ€·(2.30)and(2.31)⟹withπœ†β„“<πœ†βˆ—β„“βˆ€β„“β‰ π‘–βˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έholdsifπœ†π‘–<πœ†βˆ—π‘–+π›Ώβˆ—1ξ€Έ(ξ€·,(2.33)2.30)⟹withπœ†β„“<πœ†βˆ—β„“βˆ€β„“β‰ π‘–βˆƒπ›Ώβˆ—2𝑖>0∢15ξ€Έholdsifπœ†π‘–βˆˆξ€»πœ†βˆ—π‘–,πœ†βˆ—π‘–+π›Ώβˆ—2ξ€Ίξ€Έ.(2.34)

Taking into account that 𝐷1(𝑣1,…,𝑣𝑛)≀𝐷1(|𝑣1|,…,|𝑣𝑛|) and 𝐷1(βˆ’π‘£)=𝐷1(𝑣), from ([1], Theorem 2.1, Remark 2.1, and Theorem 4.1) we get the following proposition.

Proposition 2.12. Under assumptions (2.28) we have:(i)When (2.31) holds, ((2.30) and (2.31) hold resp.), choosing πœ†1,…,πœ†π‘› as in (2.32) (resp. (2.33)) system (2.27) has at least two weak solutions 𝑒0 and βˆ’π‘’0 with 𝑒0β„“β‰₯0 as β„“=1,…,𝑛(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†βˆ©π‘‰+(𝐷1)); (ii)When (2.30) holds, choosingπœ†1,…,πœ†π‘› as in (2.34) system (2.27) has at least two weak solutions 𝑒 and βˆ’π‘’(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†βˆ©π‘†(𝐷1)).
Consequently, when (2.30) and (2.31) hold, with πœ†β„“<πœ†βˆ—β„“forallℓ≠𝑖 and πœ†π‘–βˆˆ]πœ†βˆ—π‘–,πœ†βˆ—π‘–+min{π›Ώβˆ—1,π›Ώβˆ—2}[ system (2.27) has at least four different weak solutions.

The following proposition is obvious.

Proposition 2.13. The following relations hold: 𝑒0𝑖≒0as𝑖=1,…,𝑛,βˆƒβ„Ž,π‘˜βˆˆ{1,…,𝑛}βˆΆπ‘’β„Žβ‰’0,π‘’π‘˜β‰’0.(2.35)

Proposition 2.14. If 𝑝<π‘ž1, then as 𝑖=1,…,𝑛: 𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0π‘–β„“π‘œπ‘(Ξ©),𝑒0𝑖>0.(2.36)

Proof. It is easy to prove that 𝑛𝑖=1ξ€œΞ©||βˆ‡π‘’0𝑖||π‘βˆ’2βˆ‡π‘’0π‘–β‹…βˆ‡π‘£π‘–ξ€œπ‘‘π‘₯≀Ω𝑔𝑛𝑖=1𝑒0𝑖ξƒͺπ‘βˆ’1𝑛𝑖=1𝑣𝑖ξƒͺ𝑣𝑑π‘₯βˆ€π‘£=1,…,π‘£π‘›ξ€Έβˆˆξ‚€π‘Š01,𝑝(Ξ©)∩𝐿∞(Ω)𝑛with𝑣𝑖β‰₯0,(2.37) where π‘”βˆˆπΏπ‘ž1/(π‘ž1βˆ’π‘)(Ξ©). Then (Proposition A.3) 𝑒0π‘–βˆˆπΏβˆž(Ξ©) and consequently [5] 𝑒0π‘–βˆˆπΆ1,𝛼0𝑖ℓoc(Ξ©).
Let us note that 𝑒0𝑖 is a weak supersolution to the equation: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2π‘’π‘–βˆ’ξ‚π‘‘π‘–||𝑒𝑖||π‘ž1βˆ’2𝑒𝑖inΞ©.(2.38) Then, since (2.35), it must be [6] 𝑒0𝑖>0.

Let us continue the analysis of system (2.27) under the condition: ℓ≠𝑖𝑑ℓξƒͺπ‘ž1𝑑<min1𝑑,…,π‘›ξ‚‡βˆ€π‘–βˆˆ{1,…,𝑛},(2.39) then 𝐷1𝑐1π‘’βˆ—1,…,π‘π‘›π‘’βˆ—π‘›ξ€Έξ€·π‘<0βˆ€1,…,π‘π‘›ξ€Έβˆˆπ‘…π‘›β§΅{0}with𝑐𝑖=0foratleastoneπ‘–βˆˆ{1,…,𝑛}.(2.40) Hence (Proposition 2.5) if πΌβˆ—βŠ†πΌ and πΌβˆ—β‰ πΌ: ξ‚΅(2.39)⟹asπœ†β„“<πœ†βˆ—β„“βˆ€β„“βˆˆπΌβ§΅πΌβˆ—βˆƒπ›Ώβˆ—ξ€·π‘–>0∢15ξ€Έξ€·πœ†holdsifβ„“ξ€Έβ„“βˆˆπΌβˆ—βˆˆπ‘‹β„“βˆˆπΌβˆ—ξ€Ίπœ†βˆ—β„“,πœ†βˆ—β„“+π›Ώβˆ—ξ€Ίβ§΅ξ€·πœ†βˆ—β„“ξ€Έβ„“βˆˆπΌβˆ—ξ‚Ά.(2.41)

Proposition 2.15. Under assumptions (2.28) and (2.39), choosing πœ†1,…,πœ†π‘› as in (2.41) system (2.27) has at least two weak solutions 𝑒andβˆ’π‘’(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†βˆ©π‘†(𝐷1)) with 𝑒𝑖≒0 as 𝑖=1,…,𝑛.

Proof. Thanks to ([1], Theorem 4.1), there exists π‘£βˆˆπ‘‰βˆ’πœ†βˆ©π‘†(𝐷1) such that π»πœ†ξ€·π‘£ξ€Έξ€½π»=infπœ†(𝑣)βˆΆπ‘£βˆˆπ‘‰βˆ’πœ†ξ€·π·βˆ©π‘†1ξ€Έξ€Ύ=𝑒,𝑒=πœπ‘£isaweaksolutionofsystem(2.27),(2.42) where 𝜏=(βˆ’π‘π‘ž1βˆ’1𝑒)1/(π‘ž1βˆ’π‘).
Reasoning by contradiction, let, for example, 𝑒1≑0. Since βˆ’1=𝐷1(𝑣)≀𝐷1(0,|𝑣2|,…,|𝑣𝑛|) and from (2.39) 𝐷1(0,|𝑣2|,…,|𝑣𝑛|)<0, setting 𝛿=|𝐷1(0,|𝑣2|,…,|𝑣𝑛|)|βˆ’1/π‘ž1 we have 𝐷1ξ€·||0,𝛿𝑣2||||,…,𝛿𝑣𝑛||ξ€Έ=βˆ’1,π»πœ†ξ€·||0,𝛿𝑣2||||,…,𝛿𝑣𝑛||ξ€Έ=π›Ώπ‘π»πœ†ξ€·π‘£ξ€Έβ‰€π»πœ†ξ€·π‘£ξ€Έ,(2.43) then π»πœ†(0,𝛿|𝑣2|,…,𝛿|𝑣𝑛|)=π»πœ†(𝑣). This implies that ([1], see the proof of Theorem 4.1) (0,πœπ›Ώ|𝑣2|,…,πœπ›Ώ|𝑣𝑛|) is a weak solution of system (2.27). Then (βˆ‘π‘›β„“=2𝑑ℓ|𝑣ℓ|)π‘ž1βˆ’1≑0from which 𝑒ℓ≑0too as β„“=2,…,𝑛.
Condition (2.39) holds in particular when 𝑛ℓ=1𝑑ℓξƒͺπ‘ž1𝑑<min1𝑑,…,𝑛.(2.44)

Proposition 2.16. Replacing in Proposition 2.15 (2.39) with (2.44), it is right to say that 𝑒𝑖β‰₯0 and 𝑒𝑖≒0 as 𝑖=1,…,𝑛. Consequently, if 𝑝<π‘ž1π‘’π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,π‘Žπ‘–β„“π‘œπ‘(Ξ©),𝑒𝑖>0as𝑖=1,…,𝑛.(2.45)

Proof. Set 𝛿=|𝐷1(|𝑣1|,…,|𝑣𝑛|)|βˆ’1/π‘ž1, as in Proposition 2.15(πœπ›Ώ|𝑣1|,…,πœπ›Ώ|𝑣𝑛|) is a weak solution to system (2.27).
Let us add that since (2.44)⇒𝐷1(𝑐1π‘’βˆ—1,…,π‘π‘›π‘’βˆ—π‘›)<0forall(𝑐1,…,𝑐𝑛)βˆˆπ‘…π‘›β§΅{0}, there exists (Proposition 2.6) π›Ώβˆ—βˆ—>0 such that 𝑖15ξ€Έξ€·πœ†holdsifβ„“ξ€Έβ„“βˆˆπΌβˆˆπ‘›π‘‹β„“=1ξ€Ίπœ†βˆ—β„“,πœ†βˆ—β„“+π›Ώβˆ—βˆ—ξ€Ίβ§΅πœ†ξ€½ξ€·βˆ—β„“ξ€Έβ„“βˆˆπΌξ€Ύ.(2.46) Then the existence of 𝑒 is assured also choosing πœ†1,…,πœ†π‘› as in (2.46), and the conclusions of Proposition 2.16 hold.

Application 2.17. Let us set πœ†1=β‹―=πœ†π‘›=πœ†,𝑏1=β‹―=𝑏𝑛=𝑏thenπœ†βˆ—1=β‹―=πœ†βˆ—π‘›=πœ†βˆ—,π‘’βˆ—1=β‹―=π‘’βˆ—π‘›=π‘’βˆ—ξ€Έ,𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝑑π‘₯,𝐷1(𝑣)=π‘ž1βˆ’1ξ€œΞ©π‘‘1𝑛ℓ=1||𝑣ℓ||𝛾ξƒͺπ‘ž1/𝛾𝑣𝑑π‘₯,βˆ€π‘£=1,…,π‘£π‘›ξ€Έβˆˆπ‘Š,(2.47) where 1<𝛾<π‘ž1<̃𝑝,π‘ž1≠𝑝,𝑑1∈𝐿∞(Ξ©).(2.48) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=||π‘’πœ†π‘π‘–||π‘βˆ’2𝑒𝑖+𝑑1𝑛ℓ=1||𝑒ℓ||𝛾ξƒͺ(π‘ž1/𝛾)βˆ’1||𝑒𝑖||π›Ύβˆ’2𝑒𝑖𝑒inΞ©,𝑖=0onπœ•Ξ©as𝑖=1,…,𝑛.(2.49) We advance the conditions 𝑑+1ξ€·β‰’0βŸΉπ‘‰+𝐷1ξ€Έξ€Έξ€œβ‰ βˆ…,(2.50)Ω𝑑1ξ€·π‘’βˆ—ξ€Έπ‘ž1𝑑π‘₯<0⟹𝐷1𝑐1π‘’βˆ—,…,π‘π‘›π‘’βˆ—ξ€Έξ€·π‘<0βˆ€1,…,π‘π‘›ξ€Έβˆˆπ‘…π‘›β§΅ξ€Έ.{0}(2.51) Therefore, 𝑖(2.50)⟹14ξ€Έholdsifπœ†<πœ†βˆ—ξ‚ξ‚€(Proposition2.2),(2.50)and(2.51)βŸΉβˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έholdsifπœ†<πœ†βˆ—+π›Ώβˆ—1(Proposition2.4),(2.51)βŸΉβˆƒπ›Ώβˆ—2𝑖>0∢15ξ€Έholdsifξ€»πœ†πœ†βˆˆβˆ—,πœ†βˆ—+π›Ώβˆ—2(Proposition2.6).(2.52) Then ([1], Theorems 2.1 and 4.1, and Remarks 2.1 and 4.1).

Proposition 2.18. Under assumption (2.48), we have:(i)When (2.50) holds, ((2.50) and (2.51) hold resp.), if πœ†<πœ†βˆ—(resp.πœ†<πœ†βˆ—+π›Ώβˆ—1) system (2.49) has at least two weak solutions 𝑒0and βˆ’π‘’0 with 𝑒0β„“β‰₯0 as β„“=1,…,𝑛(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†βˆ©π‘‰+(𝐷1));(ii)When (2.51) holds,ifπœ†βˆˆ]πœ†βˆ—,πœ†βˆ—+π›Ώβˆ—2[system (2.49) has at least two weak solutions 𝑒 and βˆ’π‘’ with 𝑒ℓβ‰₯0 as β„“=1,…,𝑛(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†βˆ©π‘†(𝐷1)).
Consequently, when (2.50) and (2.51) hold, withπœ†βˆˆ]πœ†βˆ—,πœ†βˆ—+min{π›Ώβˆ—1,π›Ώβˆ—2}[ system (2.49) has at least four different weak solutions.

In order to establish some properties of 𝑒0 and 𝑒 it is useful to recall that ([1], Theorems 2.1 and 4.1)𝐷1𝑣0𝐷=sup1(𝑣)βˆΆπ‘£βˆˆπ‘†πœ†βˆ©π‘‰+𝐷1=𝑒,𝜏0=ξ€·π‘ž1π‘βˆ’1𝑒1/(π‘βˆ’π‘ž1),𝐻(2.53)πœ†ξ€·π‘£ξ€Έξ€½π»=infπœ†(𝑣)βˆΆπ‘£βˆˆπ‘‰βˆ’πœ†ξ€·π·βˆ©π‘†1ξ€Έξ€Ύ=𝑒,ξ€·πœ=βˆ’π‘π‘ž1βˆ’1𝑒1/(π‘ž1βˆ’π‘).(2.54)

Proposition 2.19. When 𝑝<π‘ž1, we have 𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0π‘–β„“π‘œπ‘(Ξ©),(2.55) besides 𝑒0𝑖≒0βˆ€π‘–βˆˆ{1,…,𝑛}if𝛾<𝑝.(2.56)

Proof. The relation 𝑒0π‘–βˆˆπΏβˆž(Ξ©) comes from Proposition A.3. Then [5] 𝑒0π‘–βˆˆπΆ1,𝛼0𝑖ℓoc(Ξ©).
About (2.56), it is sufficiently (Remark 1.1) to prove that ξ€·π‘–β„Ž16ξ€Έholdsβˆ€β„Žβˆˆ{1,…,𝑛}with𝔉=π‘†πœ†βˆ©π‘‰+𝐷1ξ€Έ.(2.57)
Let 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘†πœ†βˆ©π‘‰+(𝐷1) with π‘£β„Žβ‰‘0. Since π‘£βˆˆπ‘‰+𝐷1ξ€ΈβŸΉξƒ©||𝕂||βˆƒacompactsetπ•‚βŠ†Ξ©βˆΆπ‘>0,𝑑1>0andπœ“=β„“β‰ β„Ž||𝑣ℓ||𝛾ξƒͺ>0in𝕂,(2.58) let (Proposition A.1) (πœ‘πœ€)0<πœ€<πœ€0βŠ†πΆβˆž0(Ξ©) with 0β‰€πœ‘πœ€β‰€1 such that πœ‘πœ€βŸΆπœ’stronglyin𝐿𝑠(ξ€œΞ©),Ξ©||βˆ‡πœ‘πœ€||𝑠𝑑π‘₯⟢+∞asπœ€βŸΆ0+[[,βˆ€π‘ βˆˆ1,+∞(2.59) where πœ’ is the characteristic function of 𝕂. Set πœ€ such that ξ€œΞ©π‘‘1πœ“(π‘ž1/𝛾)βˆ’1πœ‘π›Ύπœ€π‘‘π‘₯>0,𝛿=π‘βˆ’1ξ‚Έξ€œΞ©||βˆ‡πœ‘πœ€||𝑝𝑑π‘₯βˆ’πœ†ξ€œΞ©π‘πœ‘π‘πœ€ξ‚Ήπ‘‘π‘₯>0,(2.60) with 𝑣(𝑠)=(𝑠1/𝑝𝑣1,…,(1βˆ’π‘ )1/π‘π›Ώβˆ’1/π‘πœ‘πœ€,…,𝑠1/𝑝𝑣𝑛) it results in π»πœ†(𝑣(𝑠))=π›Ώβˆ’1(1βˆ’π‘ )π‘βˆ’1ξ‚Έξ€œΞ©||βˆ‡πœ‘πœ€||𝑝𝑑π‘₯βˆ’πœ†ξ€œΞ©π‘πœ‘π‘πœ€ξ‚Ήπ‘‘π‘₯+π‘ π»πœ†[],(𝑣)=1βˆ€π‘ βˆˆ0,1βˆƒπ‘ 0∈[[0,1∢𝐷1𝑠(𝑣(𝑠))>0βˆ€π‘ βˆˆ0ξ€»,1,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ 1(𝑣(𝑠))=βˆ’βˆž.(2.61)

Proposition 2.20. When 𝑝<π‘ž1, we have π‘’π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,π›Όπ‘–β„“π‘œπ‘(Ξ©),(2.62)𝑒𝑖>0βˆ€π‘–βˆˆ{1,…,𝑛}if𝑝<𝛾.(2.63)

Proof. We can get (2.62) from Proposition A.3 and [5].
About (2.63), it is sufficiently [6] to prove that 𝑒𝑖≒0 as 𝑖=1,…,𝑛. Reasoning by contradiction, let, for example, 𝑣1≑0. We note that π‘£βˆˆπ‘‰βˆ’πœ†βŸΉξ‚΅ξ€œβˆƒβ„“βˆˆ{2,…,𝑛}∢Ω||βˆ‡π‘£β„“||𝑝𝑑π‘₯βˆ’πœ†ξ€œΞ©π‘π‘£π‘β„“ξ‚Άπ‘‘π‘₯<0.(2.64) Let us suppose β„“=2 and set 𝑣(𝑠)=((1βˆ’π‘ )1/𝛾𝑣2,𝑠1/𝛾𝑣2,𝑣3,…,𝑣𝑛). Then 𝐷1[](𝑣(𝑠))=βˆ’1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[0,1βˆΆπ»πœ†ξ€Ίπ‘ (𝑣(𝑠))<0βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π»π‘‘π‘ πœ†(𝑣(𝑠))=+∞.(2.65) Set 𝑠1∈[𝑠0,1[ such that (𝑑/𝑑𝑠)π»πœ†(𝑣(𝑠))>0forallπ‘ βˆˆ[𝑠1,1[ and taking into account (2.54), we get the contradiction: π»πœ†ξ€·π‘£ξ€Έβ‰€π»πœ†(𝑣(𝑠))<π»πœ†ξ€·π‘£ξ€Έξ€Ίπ‘ βˆ€π‘ βˆˆ1ξ€Ί,1.(2.66)

Proposition 2.21. When 𝛾=𝑝<π‘ž1, we allow that as 𝑖=1,…,𝑛: 𝑒0𝑖>0,𝑒𝑖>0.(2.67)

Proof. The assumption 𝛾=𝑝 implies that ξ€·π‘£βˆ€π‘£=1,…,π‘£π‘›ξ€Έβˆˆπ‘Šβ§΅{0}withπ‘£β„ŽβˆƒΜƒξ€·Μƒπ‘£β‰‘0forsomeβ„Žβˆˆ{1,…,𝑛},𝑣=1̃𝑣,…,π‘›ξ€ΈΜƒπ‘£βˆˆπ‘ŠβˆΆβ„“β‰’0asβ„“=1,…,𝑛,π»πœ†(̃𝑣)=π»πœ†(𝑣),𝐷1(̃𝑣)=𝐷1(𝑣).(2.68) Let, for example, 𝑣1≑0 and 𝑣2β‰’0. Set π‘ βˆˆ]0,1[ and 𝑣11=(1βˆ’π‘ )1/𝑝𝑣2,𝑣12=𝑠1/𝑝𝑣2,𝑣1β„“=𝑣ℓ asβ„“>2, with 𝑣1=(𝑣11,…,𝑣1𝑛), we have π»πœ†ξ€·π‘£1ξ€Έ=π»πœ†(𝑣),𝐷1𝑣1ξ€Έ=𝐷1(𝑣).(2.69) If 𝑣3≑0, set 𝑣21=(1βˆ’π‘ )1/𝑝𝑣11,𝑣23=𝑠1/𝑝𝑣11,𝑣2β„“=𝑣1β„“ as β„“βˆˆ{1,…,𝑛}⧡{1,3}, with𝑣2=(𝑣21,…,𝑣2𝑛), it results in π»πœ†ξ€·π‘£2ξ€Έ=π»πœ†(𝑣),𝐷1𝑣2ξ€Έ=𝐷1(𝑣).(2.70) This method let us to find ̃𝑣.
Then, if 𝑣0β„Žβ‰‘0(resp.π‘£β„Žβ‰‘0) for some β„Žβˆˆ{1,…,𝑛}, with ̃𝑣0Μƒ(resp.𝑣) as in (2.68) we have from (2.53) (resp. (2.54)) 𝐷1(̃𝑣0)=𝑒(resp.π»πœ†(̃𝑣)=𝑒). Consequently ([1], see the proof of Theorem 2.1 (resp. Theorem 4.1)) ̃𝑒0=𝜏0̃𝑣0Μƒ(resp.𝑒=πœΜƒπ‘£) is a weak solution of system (2.49). Therefore [6] ̃𝑒0𝑖̃>0(resp.𝑒𝑖>0) as 𝑖=1,…,𝑛.

Application 2.22. Let us assume πœ†β„“,𝑏ℓ, and 𝐴 as in Application 2.17, 𝐷𝑗(𝑣)=π‘žπ‘—βˆ’1ξ€œΞ©π‘‘π‘—ξƒ©π‘›ξ“β„“=1||𝑣ℓ||𝛾𝑗ξƒͺπ‘žπ‘—/𝛾𝑗𝑣𝑑π‘₯βˆ€π‘£=1,…,π‘£π‘›ξ€Έβˆˆπ‘Šas𝑗=1,…,π‘š,(2.71) where 𝑝<π‘ž1<β‹―<π‘žπ‘š<̃𝑝,1<𝛾𝑗<π‘žπ‘—,π‘‘π‘šβˆˆπΏβˆžπ‘‘(Ξ©),π‘—βˆˆπΏβˆž(Ξ©)⧡{0},𝑑𝑗≀0if𝑗=1,…,π‘šβˆ’1.(2.72) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=||π‘’πœ†π‘π‘–||π‘βˆ’2𝑒𝑖+π‘šξ“π‘—=1𝑑𝑗𝑛ℓ=1||𝑒ℓ||𝛾𝑗ξƒͺ(π‘žπ‘—/𝛾𝑗)βˆ’1||𝑒𝑖||π›Ύπ‘—βˆ’2𝑒𝑖𝑒inΞ©,𝑖=0onπœ•Ξ©as𝑖=1,…,𝑛,(2.73) under almost one of the conditions: 𝑑+π‘šξ€œβ‰’0,Ξ©π‘‘π‘šξ€·π‘’βˆ—ξ€Έπ‘žπ‘šπ‘‘π‘₯<0.(2.74) By using some results ([1], Theorems 2.2 and 4.2, and Remarks 2.3 and 4.4), we can advance a proposition similar to Proposition 2.18 replacing in particular 𝑉+(𝐷1) with 𝑉+(π·π‘š) and 𝑆(𝐷1) with𝑆(π·π‘š).
Thanks to Proposition A.3 and a result of [5], for the solutions 𝑒0 and 𝑒 to system (2.73), we have 𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0𝑖ℓoc(Ξ©),π‘’π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼𝑖ℓoc(Ξ©).(2.75) We continue to analyze the properties of 𝑒0 and 𝑒. To this aim we recall that ([1], Theorems 2.2 and 4.2), set for each π‘£βˆˆπ‘‰+(π·π‘š)(resp.π‘£βˆˆπ‘‰βˆ’πœ†βˆ©π‘†(π·π‘š))πœ“(𝑑,𝑣)=π‘π‘‘π‘βˆ’1π»πœ†βˆ‘(𝑣)βˆ’π‘šπ‘—=1π‘žπ‘—π‘‘π‘žπ‘—βˆ’1𝐷𝑗(𝑣), we have: βˆƒβˆ£π‘‘(𝑣)>0βˆΆπœ“(𝑑(𝑣),𝑣)=0,πœ•πœ“πœ•π‘‘(𝑑(𝑣),𝑣)β‰ 0.(2.76) Besides with 𝐸(𝑣)=(𝑑(𝑣))π‘π»πœ†βˆ‘(𝑣)βˆ’π‘šπ‘—=1(𝑑(𝑣))π‘žπ‘—π·π‘—(𝑣), it results in 𝐸𝑣0𝐸=inf(𝑣)βˆΆπ‘£βˆˆπ‘†πœ†βˆ©π‘‰+ξ€·π·π‘šξ€Έξ‚‡,𝜏0𝑣=𝑑0ξ€Έ,𝐸(2.77)𝑣=inf𝐸(𝑣)βˆΆπ‘£βˆˆπ‘‰βˆ’πœ†ξ€·π·βˆ©π‘†π‘šξ€Έξ‚‡,ξ€·πœ=𝑑𝑣.(2.78)

Proposition 2.23. When π›Ύπ‘š<𝑝≀𝛾𝑗 as 𝑗=1,…,π‘šβˆ’1, then 𝑒0𝑖≒0βˆ€π‘–βˆˆ{1,…,𝑛}.(2.79)

Proof. It is sufficiently (Remark 1.1) to prove that ξ€·π‘–β„Ž16ξ€Έholdsβˆ€β„Žβˆˆ{1,…,𝑛}with𝔉=π‘†πœ†βˆ©π‘‰+ξ€·π·π‘šξ€Έ.(2.80) Let 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘†πœ†βˆ©π‘‰+(π·π‘š) with π‘£β„Žβ‰‘0. As in Proposition 2.19, it is possible to find π‘£β„ŽβˆˆπΆβˆž0(Ξ©)⧡{0} such that with 𝑣(𝑠)=(𝑠1/𝑝𝑣1,…,(1βˆ’π‘ )1/π‘π‘£β„Ž,…,𝑠1/𝑝𝑣𝑛), it results in π»πœ†[](𝑣(𝑠))=1βˆ€π‘ βˆˆ0,1,π·π‘šξ€Ίπ‘ (𝑣(𝑠))>0βˆ€π‘ βˆˆ0,1ξ€»ξ€·0≀𝑠0ξ€Έ,<1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—(𝑣(𝑠))βˆˆπ‘…as𝑗=1,…,π‘šβˆ’1,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘š(𝑣(𝑠))=βˆ’βˆž.(2.81)

Proposition 2.24. When 𝑝<π›Ύπ‘šβ‰€π›Ύπ‘— as 𝑗=1,…,π‘šβˆ’1, then 𝑒𝑖>0βˆ€π‘–βˆˆ{1,…,𝑛}.(2.82)

Proof. It is sufficiently [6] to prove that 𝑒𝑖≒0forallπ‘–βˆˆ{1,…,𝑛}. Reasoning by contradiction, let, for example, 𝑣1≑0and𝑣2β‰’0 such that ξ€œΞ©||βˆ‡π‘£2||𝑝𝑑π‘₯βˆ’πœ†ξ€œΞ©π‘π‘£π‘2𝑑π‘₯<0.(2.83) Since 𝑑𝑣𝑑>0,πœ“π‘£ξ€Έ,𝑣=0,πœ•πœ“ξ€·π‘‘ξ€·πœ•π‘‘π‘£ξ€Έ,𝑣≠0,(2.84) there exist an open ball 𝐡ofπ‘Š with centre 𝑣 included in π‘‰βˆ’πœ† and a unique functional π‘‘βˆ—(𝑣) belongs to 𝐢1(𝐡) such that π‘‘βˆ—ξ€·π‘‘(𝑣)>0,πœ“βˆ—ξ€Έξ‚(𝑣),𝑣=0βˆ€π‘£βˆˆπ΅.(2.85) Then, the functional πΈβˆ—ξ€·π‘‘(𝑣)=βˆ—ξ€Έ(𝑣)π‘π»πœ†(𝑣)βˆ’π‘šξ“π‘—=1ξ€·π‘‘βˆ—ξ€Έ(𝑣)π‘žπ‘—π·π‘—ξ‚π΅(𝑣)βˆ€π‘£βˆˆ(2.86) belongs to 𝐢1(𝐡), and we have 𝑑(𝑣)=π‘‘βˆ—ξ‚ξ€·π·(𝑣)βˆ€π‘£βˆˆπ΅βˆ©π‘†π‘šξ€Έ.(2.87) Then, for (2.78) πΈβˆ—ξ€·π‘£ξ€Έξ‚†πΈ=infβˆ—ξ‚ξ€·π·(𝑣)βˆΆπ‘£βˆˆπ΅βˆ©π‘†π‘šξ€Έξ‚‡.(2.88) Now, let us remark that with 𝑣(𝑠)=((1βˆ’π‘ )1/π›Ύπ‘šπ‘£2,𝑠1/π›Ύπ‘šπ‘£2,𝑣3,…,𝑣𝑛), it results in π·π‘š[](𝑣(𝑠))=βˆ’1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[𝑠0,1βˆΆπ‘£(𝑠)βˆˆπ΅βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π»π‘‘π‘ πœ†(𝑣(𝑠))=+∞,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—(𝑣(𝑠))βˆˆπ‘…as𝑗=1,…,π‘šβˆ’1.(2.89) Then, since π‘‘πΈπ‘‘π‘ βˆ—ξ€·π‘‘(𝑣(𝑠))=βˆ—ξ€Έ(𝑣(𝑠))π‘π‘‘π»π‘‘π‘ πœ†(𝑣(𝑠))βˆ’π‘šξ“π‘—=1ξ€·π‘‘βˆ—ξ€Έ(𝑣(𝑠))π‘žπ‘—π‘‘π·π‘‘π‘ π‘—ξ€Ίπ‘ (𝑣(𝑠))βˆ€π‘ βˆˆ0ξ€Ί,,1(2.90) we havelim𝑠→1βˆ’(𝑑/𝑑𝑠)πΈβˆ—(𝑣(𝑠))=+∞. Consequently, βˆƒπ‘ 1βˆˆξ€Ίπ‘ 0ξ€ΊβˆΆπ‘‘,1πΈπ‘‘π‘ βˆ—ξ€Ίπ‘ (𝑣(𝑠))>0βˆ€π‘ βˆˆ1ξ€Ί,1,(2.91) from which we get the contradiction: πΈβˆ—ξ€·π‘£ξ€Έβ‰€πΈβˆ—(𝑣(𝑠))<πΈβˆ—ξ€·π‘£ξ€Έξ€Ίπ‘ βˆ€π‘ βˆˆ1ξ€Ί,1.(2.92)

Proposition 2.25. When 𝑝=𝛾1=β‹―=π›Ύπ‘š, we allow that 𝑒0𝑖>0,𝑒𝑖>0βˆ€π‘–βˆˆ{1,…,𝑛}.(2.93)

Proof. We reason as in Proposition 2.21, taking into account (2.77) and (2.78) ([1], see proofs of Theorems 2.2 and 4.2).

Application 2.26. Let for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝑑π‘₯,𝐷𝑗(𝑣)=βˆ’π‘›ξ‘β„“=1ξ€œΞ©||𝑣ℓ||π‘žπ‘—β„“π·π‘‘π‘₯as𝑗=1,…,π‘šβˆ’1(π‘šβ‰₯2),π‘š(𝑣)=π‘žπ‘šβˆ’1βŽ‘βŽ’βŽ’βŽ£ξ€œΞ©ξƒ©π‘›ξ“β„“=1𝑑ℓ||𝑣ℓ||𝛾ξƒͺπ‘žπ‘š/𝛾𝑑π‘₯βˆ’π‘›ξ“β„“=1ξ€œΞ©ξ‚π‘‘β„“||𝑣ℓ||π‘žπ‘šβŽ€βŽ₯βŽ₯⎦,𝑑π‘₯(2.94) where 1<𝛾<π‘β‰€π‘žπ‘—β„“,𝑛ℓ=1π‘žπ‘—β„“=π‘žπ‘—<π‘žπ‘š<̃𝑝,π‘ž1<β‹―<π‘žπ‘šβˆ’1,𝑑ℓ,ξ‚π‘‘β„“βˆˆπΏβˆž(Ξ©),𝑑ℓ,𝑑ℓ>0.(2.95) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2π‘’π‘–βˆ’π‘šβˆ’1𝑗=1ξƒ©π‘žπ‘—π‘–ξ‘β„“β‰ π‘–ξ€œΞ©||𝑒ℓ||π‘žπ‘—β„“ξƒͺ||𝑒𝑑π‘₯𝑖||π‘žπ‘—π‘–βˆ’2𝑒𝑖+𝑛ℓ=1𝑑ℓ||𝑒ℓ||𝛾ξƒͺ(π‘žπ‘š/𝛾)βˆ’1𝑑𝑖||𝑒𝑖||π›Ύβˆ’2π‘’π‘–βˆ’ξ‚π‘‘π‘–||𝑒𝑖||π‘žπ‘šβˆ’2𝑒𝑖𝑒inΞ©,𝑖=0onπœ•Ξ©as𝑖=1,…,𝑛.(2.96) Let us introduce the conditions: βˆƒΞ©+||Ξ©βŠ†Ξ©βˆΆ+||𝑁>0,π‘‘π‘žπ‘š/𝛾ℓ>𝑑ℓinΞ©+forsomeξ€·β„“βˆˆ{1,…,π‘›βˆ’1}βŸΉπ‘‰+ξ€·π·π‘šξ€Έξ€Έ,π‘‘β‰ βˆ…(2.97)π‘žπ‘šπ‘›/𝛾<ξ‚π‘‘π‘›ξ€·βŸΉπ·π‘šξ€·0,…,0,π‘π‘›π‘’βˆ—π‘›ξ€Έ<0βˆ€π‘π‘›ξ€Έ.βˆˆπ‘…β§΅{0}(2.98) Then (Propositions 2.2, 2.3 and 2.5) ξ€·(2.97)⟹withπœ†β„“<πœ†βˆ—β„“ξ€·π‘–βˆ€β„“βˆˆ{1,…,𝑛}14ξ€Έξ€Έ(ξ€·holds,(2.99)2.97)and(2.98)⟹withπœ†β„“<πœ†βˆ—β„“βˆ€β„“βˆˆ{1,…,π‘›βˆ’1}βˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έholdsifπœ†π‘›<πœ†βˆ—π‘›+π›Ώβˆ—1ξ€Έξ€·,(2.100)(2.98)⟹withπœ†β„“<πœ†βˆ—β„“βˆ€β„“βˆˆ{1,…,π‘›βˆ’1}βˆƒπ›Ώβˆ—2𝑖>0∢15ξ€Έholdsifπœ†π‘›βˆˆξ€»πœ†βˆ—π‘›,πœ†βˆ—π‘›+π›Ώβˆ—2ξ€Ίξ€Έ.(2.101) Since ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4), we get the following proposition.

Proposition 2.27. Under assumption (2.95) we have:(i)When (2.97) holds ((2.97) and (2.98) hold, resp.), set πœ†1,…,πœ†π‘›as in (2.99) (resp. (2.100)) system (2.96) has at least two weak solutions 𝑒0 and βˆ’π‘’0 with 𝑒0β„“β‰₯0 as β„“=1,…,𝑛(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†βˆ©π‘‰+(π·π‘š));(ii)When (2.98) holds, set πœ†1,…,πœ†π‘› as in (2.101) system (2.96) has at least two weak solutions 𝑒and βˆ’π‘’ with 𝑒ℓβ‰₯0 as β„“=1,…,𝑛(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†βˆ©π‘†(π·π‘š)).
Consequently, when (2.97) and (2.98) hold, with πœ†β„“<πœ†βˆ—β„“forallβ„“βˆˆ{1,…,π‘›βˆ’1}and πœ†π‘›βˆˆ]πœ†βˆ—π‘›,πœ†βˆ—π‘›+min{π›Ώβˆ—1,π›Ώβˆ—2}[ system (2.96) has at least four different weak solutions.

We remark that (Proposition A.3, [5]) as 𝑖=1,…,𝑛:𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0π‘–β„“π‘œπ‘(Ξ©),π‘’π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,π›Όπ‘–β„“π‘œπ‘(Ξ©).(2.102) Moreover, since 𝑒0𝑖(resp.𝑒𝑖) is a weak supersolution of the equation:ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2π‘’π‘–βˆ’π‘šβˆ’1𝑗=1π‘Žπ‘—π‘žπ‘—π‘–||𝑒𝑖||π‘žπ‘—π‘–βˆ’2π‘’π‘–βˆ’ξ‚π‘‘π‘–||𝑒𝑖||π‘žπ‘šβˆ’2𝑒𝑖inΞ©,(2.103) where π‘Žπ‘—=βˆβ„“β‰ π‘–βˆ«Ξ©(𝑒0β„“)π‘žπ‘—β„“π‘‘π‘₯(resp.π‘Žπ‘—=βˆβ„“β‰ π‘–βˆ«Ξ©(𝑒ℓ)π‘žπ‘—β„“π‘‘π‘₯), we have [6] 𝑒0𝑖>0if𝑒0𝑖≒0resp.𝑒𝑖>0if𝑒𝑖.β‰’0(2.104)

Proposition 2.28. It results in u0𝑖>0as𝑖=1,…,𝑛,𝑒ℓ>0.(2.105)

Proof. Since (2.104), we must show that 𝑒0𝑖≒0as𝑖=1,…,𝑛,(2.106)𝑒ℓ≒0.(2.107) About (2.106), it is sufficient (Remark 1.1) to prove that ξ€·π‘–β„Ž16ξ€Έholdsβˆ€β„Žβˆˆ{1,…,𝑛}with𝔉=π‘†πœ†βˆ©π‘‰+ξ€·π·π‘šξ€Έ.(2.108) Let 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘†πœ†βˆ©π‘‰+(π·π‘š) with π‘£β„Žβ‰‘0. Let π•‚βŠ†Ξ© be a compact set such that ||𝕂||𝑁>0,πœ“=β„“β‰ β„Žπ‘‘β„“||𝑣ℓ||𝛾>0in𝕂.(2.109) From Proposition A.1, there exists πœ‘βˆˆπΆβˆž0(Ξ©), with 0β‰€πœ‘β‰€1, such that 𝛿=π‘βˆ’1ξ‚Έξ€œΞ©||||βˆ‡πœ‘π‘π‘‘π‘₯βˆ’πœ†β„Žξ€œΞ©π‘β„Žπœ‘π‘ξ‚Ήξ€œπ‘‘π‘₯>0,Ξ©πœ“π‘žπ‘š/π›Ύπ‘‘β„Žπœ‘π‘π‘‘π‘₯>0.(2.110) Then, with 𝑣(𝑠)=(𝑠1/𝑝𝑣1,…,(1βˆ’π‘ )1/π‘π›Ώβˆ’1/π‘πœ‘,…,𝑠1/𝑝𝑣𝑛), we have π»πœ†[](𝑣(𝑠))=1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[0,1βˆΆπ·π‘šξ€Ίπ‘ (𝑣(𝑠))>0βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—]](𝑣(𝑠))βˆˆβˆ’βˆž,0as𝑗=1,…,π‘šβˆ’1,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘š(𝑣(𝑠))=βˆ’βˆž.(2.111)
Let us prove (2.107). We recall that ([1], Theorem 4.2): 𝐸𝑣𝐸=inf(𝑣)βˆΆπ‘£βˆˆπ‘‰βˆ’πœ†ξ€·π·βˆ©π‘†π‘šξ€Έξ‚‡,(2.112) where 𝐸 as in Application 2.22. Reasoning by contradiction, let 𝑣ℓ≑0. Then, 𝑣ℓ≒0 for some β„“β‰ β„“ and consequently from (2.104) βˆ‘β„“β‰ β„“π‘‘β„“(𝑣ℓ)𝛾>0.
Let πœ‘βˆˆπΆβˆž0(Ξ©), with 0β‰€πœ‘β‰€1, such that βˆ«Ξ©π‘‘π‘žπ‘š/π›Ύβ„“πœ‘π‘žπ‘šβˆ«π‘‘π‘₯>Ξ©ξ‚π‘‘β„“πœ‘π‘žπ‘šπ‘‘π‘₯. Let us consider the function: 𝑔(𝑠,𝜏)=π·π‘šξ€·πœπ‘£1,…,π‘ πœ‘,…,πœπ‘£π‘›ξ€Έ=π‘žπ‘šβˆ’1βŽ‘βŽ’βŽ’βŽ£ξ€œΞ©βŽ›βŽœβŽœβŽπ‘ π›Ύπ‘‘β„“πœ‘π›Ύ+πœπ›Ύξ“β„“β‰ β„“π‘‘β„“ξ€·π‘£β„“ξ€Έπ›ΎβŽžβŽŸβŽŸβŽ π‘žπ‘š/𝛾𝑑π‘₯βˆ’π‘ π‘žπ‘šξ€œΞ©ξ‚π‘‘β„“πœ‘π‘žπ‘šπ‘‘π‘₯βˆ’πœπ‘žπ‘šξ“β„“β‰ β„“ξ€œΞ©ξ‚π‘‘β„“ξ€·π‘£β„“ξ€Έπ‘žπ‘šβŽ€βŽ₯βŽ₯βŽ¦π‘‘π‘₯βˆ€π‘ β‰₯0,βˆ€πœβ‰₯1.(2.113) Since 𝑔(0,1)=βˆ’1,πœ•π‘”πœ•π‘ (𝑠,𝜏)>0βˆ€π‘ >0,βˆ€πœβ‰₯1,𝑔(0,𝜏)=βˆ’πœπ‘žπ‘š<βˆ’1βˆ€πœ>1,lim𝑠→+βˆžπ‘”(𝑠,𝜏)=+βˆžβˆ€πœβ‰₯1,(2.114) we have βˆ€πœβ‰₯1βˆƒβˆ£π‘ (𝜏)β‰₯0(𝑠(1)=0,𝑠(𝜏)>0for𝜏>1)βˆΆπ‘”(𝑠(𝜏),𝜏)=βˆ’1.(2.115) We note that limπœβ†’1+𝑠(𝜏)=0. In fact, if {πœπ‘›}βŠ†]1,+∞[andlimπœπ‘›=1, being 𝑔(𝑠(πœπ‘›),πœπ‘›)=βˆ’1, {𝑠(πœπ‘›)} is bounded (else (within a subsequence) lim𝑔(𝑠(πœπ‘›),πœπ‘›)=+∞). Then (within a subsequence) lim𝑠(πœπ‘›)=πœ” with 𝑔(πœ”,1)=0, from which πœ”=0.
We add that 𝑠(𝜏) belongs to 𝐢1(]1,+∞[), and its derivative has the form: π‘ ξ…ž1(𝜏)=βˆ’(𝑠(𝜏))π›Ύβˆ’1̃𝑔(𝑠(𝜏),𝜏)βˆ€πœ>1withlimπœβ†’1+][.̃𝑔(𝑠(𝜏),𝜏)βˆˆβˆ’βˆž,0(2.116) Hence, set 𝑣(𝜏)=(πœπ‘£1,…,𝑠(𝜏)πœ‘,…,πœπ‘£π‘›), it results in π·π‘š(𝑣(𝜏))=βˆ’1βˆ€πœβ‰₯1,limπœβ†’1+π‘‘π»π‘‘πœπœ†(𝑣(𝜏))=π‘π»πœ†ξ€·π‘£ξ€Έ<0,limπœβ†’1+π‘‘π·π‘‘πœπ‘—(𝑣(𝜏))=0as𝑗=1,…,π‘šβˆ’1.(2.117)
As in Proposition 2.24, we introduce the open ball 𝐡 with centre 𝑣 included in π‘‰βˆ’πœ† and the functionals π‘‘βˆ—(𝑣) and πΈβˆ—(𝑣) belonging to 𝐢1(𝐡). Chosen 𝜏0>1 such that 𝑣(𝜏)∈𝐡forall𝜏∈[1,𝜏0], we have π‘‘πΈπ‘‘πœβˆ—ξ€·π‘‘(𝑣(𝜏))=βˆ—ξ€Έ(𝑣(𝜏))π‘π‘‘π»π‘‘πœπœ†(𝑣(𝜏))βˆ’π‘šβˆ’1𝑗=1ξ€·π‘‘βˆ—ξ€Έ(𝑣(𝜏))π‘žπ‘—π‘‘π·π‘‘πœπ‘—ξ€Ί(𝑣(𝜏))βˆ€πœβˆˆ1,𝜏0ξ€»,(2.118) and consequently limπœβ†’1+(𝑑/π‘‘πœ)πΈβˆ—(𝑣(𝜏))<0. Then, taking into account (2.112), with 𝜏1∈]1,𝜏0] such that (𝑑/π‘‘πœ)πΈβˆ—(𝑣(𝜏))<0forall𝜏∈]1,𝜏1], we get the contradiction: πΈβˆ—ξ€·π‘£ξ€Έβ‰€πΈβˆ—(𝑣(𝜏))<πΈβˆ—ξ€·π‘£ξ€Έξ€»βˆ€πœβˆˆ1,𝜏1ξ€».(2.119)

Proposition 2.29. If π‘‘π‘žπ‘šβ„“/𝛾>𝑑ℓasβ„“=1,…,π‘›βˆ’1, then 𝑒ℓ>0asβ„“=1,…,𝑛.(2.120)

Proof. In fact, 𝑒ℓ>0asβ„“=1,…,π‘›βˆ’1(Proposition2.23),𝑒𝑛≑0βŸΉπ·π‘šξ€·π‘’ξ€Έ>0.(2.121)

Application 2.30. Let for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘βˆ’1ξ€œΞ©ξƒ©π‘›ξ“β„“=1||βˆ‡π‘£β„“||𝛾ξƒͺ𝑝/𝛾𝑑π‘₯+𝑛ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝ℓ𝐷𝑑π‘₯,π‘—ξ€œ(𝑣)=Ξ©πœŒπ‘—ξƒ©π‘›ξ‘β„“=1||𝑣ℓ||π‘žπ‘—β„“ξƒͺ𝐷𝑑π‘₯as𝑗=1,…,π‘šβˆ’1,π‘š(𝑣)=π‘žπ‘šβˆ’1βŽ‘βŽ’βŽ’βŽ£ξ€œΞ©|||||𝑛ℓ=1𝑑ℓ𝑣ℓ|||||π‘žπ‘šβˆ’1𝑛ℓ=1𝑑ℓ𝑣ℓξƒͺξ€œπ‘‘π‘₯βˆ’Ξ©π‘‘||𝑣𝑛||π‘žπ‘šβŽ€βŽ₯βŽ₯⎦,𝑑π‘₯(2.122) where 1<𝛾<𝑝,𝑝ℓ>1,𝑛ℓ=1𝑝ℓ=𝑝,π‘žπ‘—β„“>1,𝑛ℓ=1π‘žπ‘—β„“=π‘žπ‘—,𝑝<π‘žπ‘š,π‘ž1<β‹―<π‘žπ‘šπœŒ<̃𝑝,π‘—βˆˆπΏβˆž(Ξ©)⧡{0},πœŒπ‘—β‰€0,𝑑ℓ,π‘‘βˆˆπΏβˆž(Ξ©),𝑑ℓ(π‘₯)β‰ 0a.e.inΞ©,𝑑>0.(2.123) Let as β„“=1,…,π‘›πΉβ„“βˆˆπ‘Šβˆ’1,𝑝′(Ξ©)(π‘ξ…ž=𝑝/(π‘βˆ’1)). Let βˆ‘βŸ¨βŸ¨πΉ,π‘£βŸ©βŸ©=𝑛ℓ=1βŸ¨πΉβ„“,π‘£β„“βŸ©forallπ‘£βˆˆπ‘Š. Set πœ‚π‘–=0 as 𝑖=1,…,π‘›βˆ’1 and πœ‚π‘›=1, let us consider the system: βŽ›βŽœβŽœβŽβŽ‘βŽ’βŽ’βŽ£ξƒ©βˆ’div𝑛ℓ=1||βˆ‡π‘’β„“||𝛾ξƒͺ(𝑝/𝛾)βˆ’1||βˆ‡π‘’π‘–||π›Ύβˆ’2+π‘π‘–ξƒ©ξ‘β„“β‰ π‘–ξ€œΞ©||βˆ‡π‘’β„“||𝑝ℓξƒͺ||βˆ‡π‘’π‘–||π‘π‘–βˆ’2⎀βŽ₯βŽ₯βŽ¦βˆ‡π‘’π‘–βŽžβŽŸβŽŸβŽ =πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+π‘šβˆ’1𝑗=1π‘žπ‘—π‘–πœŒπ‘—ξƒ©ξ‘β„“β‰ π‘–||𝑒ℓ||π‘žπ‘—β„“ξƒͺ||𝑒𝑖||π‘žπ‘—π‘–βˆ’2𝑒𝑖+|||||𝑛ℓ=1𝑑ℓ𝑒ℓ|||||π‘žπ‘šβˆ’1π‘‘π‘–βˆ’πœ‚π‘–π‘‘||𝑒𝑛||π‘žπ‘šβˆ’2𝑒𝑛+𝐹𝑖𝑒inΞ©,𝑖=0onπœ•Ξ©as𝑖=1,…,𝑛,(2.124) under at least one of the following conditions βˆƒΞ©+||Ξ©βŠ†Ξ©βˆΆ+||𝑁>0,𝑑ℓ>0inΞ©+ξ€·forsomeβ„“βˆˆ{1,…,π‘›βˆ’1}βŸΉπ‘‰+ξ€·π·π‘šξ€Έξ€Έ||π‘‘β‰ βˆ…,(2.125)𝑛||π‘žπ‘šξ€·<π‘‘βŸΉπ·π‘šξ€·0,…,0,π‘π‘›π‘’βˆ—π‘›ξ€Έ<0βˆ€π‘π‘›ξ€Έβˆˆπ‘…β§΅{0}.(2.126) Evidently, about the validity of (𝑖14) we choose πœ†1,…,πœ†π‘› as in Application 2.26.

Proposition 2.31 (see [1], Theorem 3.2). Under assumptions (2.123), (2.125) ((2.125) and (2.126), resp.), if 𝐹≒0 and β€–πΉβ€–βˆ— is sufficiently small, for πœ†1,…,πœ†π‘› as in (2.99) (resp. (2.100)) system (2.124) has at least one weak solution ̃𝑣̃𝑒(̃𝑒=Μƒπœ, ΜƒΜƒπœ=const.>0,π‘£βˆˆπ‘†πœ†βˆ©π‘‰+(π·π‘š)).

Let us note that Μƒπ‘’β„Žβ‰’0evenifπΉβ„Žξ€·πΉβ‰‘0sinceβ„Žβ‰‘0,Μƒπ‘’β„Žξ€ΈβŸΉβ‰‘0𝑛ℓ=1𝑑ℓ̃𝑒ℓ≑0βŸΉπ·π‘š(̃𝑒)≀0.(2.127)

Application 2.32. Let πœ†1=β‹―=πœ†π‘›=0, and for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘βˆ’1ξ€œΞ©ξƒ¬π‘›ξ“β„“=1ξ€·||βˆ‡π‘£β„“||𝛾||𝑣+π‘Žβ„“||𝛾𝑝/𝛾𝐷𝑑π‘₯,𝑗(𝑣)=π‘žπ‘—βˆ’1ξ€œΞ©π‘‘π‘—ξƒ©π‘›ξ“β„“=1||𝑣ℓ||𝛾𝑗ξƒͺπ‘žπ‘—/𝛾𝑗𝑑π‘₯as𝑗=1,…,π‘š,withπ‘š>2,(2.128) under one of the following assumptions: π‘ŽβˆˆπΏβˆž(Ξ©),π‘Žβ‰₯0,π‘‘π‘—βˆˆπΏβˆž(Ξ©)⧡{0}with𝑑1≀0,𝑑𝑗β‰₯0as𝑗β‰₯2,1<𝛾𝑗<𝛾<𝑝<π‘ž2<β‹―<π‘žπ‘š<̃𝑝as𝑗β‰₯2,𝛾≀𝛾1<π‘ž1<π‘ž2;(2.129)π‘ŽβˆˆπΏβˆž(Ξ©),π‘Žβ‰₯0,as𝑗=1,…,π‘šπ‘‘π‘—βˆˆπΏβˆž(Ξ©)⧡{0},𝑑𝑗β‰₯0,1<𝛾𝑗<𝛾<𝑝<π‘ž1<β‹―<π‘žπ‘š<̃𝑝.(2.130) Set 𝐹 as in Application 2.30. Let us consider the system: βŽ›βŽœβŽœβŽξƒ¬βˆ’div𝑛ℓ=1ξ€·||βˆ‡π‘’β„“||𝛾||𝑒+π‘Žβ„“||𝛾(𝑝/𝛾)βˆ’1||βˆ‡π‘’π‘–||π›Ύβˆ’2βˆ‡π‘’π‘–βŽžβŽŸβŽŸβŽ ξƒ¬=βˆ’π‘›ξ“β„“=1ξ€·||βˆ‡π‘’β„“||𝛾||𝑒+π‘Žβ„“||𝛾(𝑝/𝛾)βˆ’1π‘Ž||𝑒𝑖||π›Ύβˆ’2𝑒𝑖+π‘šξ“π‘—=1𝑑𝑗𝑛ℓ=1||𝑒ℓ||𝛾𝑗ξƒͺ(π‘žπ‘—/𝛾𝑗)βˆ’1||𝑒𝑖||π›Ύπ‘—βˆ’2𝑒𝑖+𝐹𝑖𝑒inΞ©,𝑖=0onπœ•Ξ©as𝑖=1,…,𝑛.(2.131) Let us verify that ξ€Ίξ€»βŸΉπ‘–(2.129)resp.(2.130)ξ€·ξ€·β„Ž16ξ€Έholdsβˆ€β„Žβˆˆ{1,…,𝑛}with𝔉=π‘†πœ†βˆ©π‘‰+𝐷2,…,π·π‘šξ€Έξ€Ίresp.𝔉=π‘†πœ†βˆ©π‘‰+𝐷1,…,π·π‘š.ξ€Έξ€»ξ€Έ(2.132) Let 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ”‰ with, for example, 𝑣1≑0. Let 𝑗0∈{2,…,π‘š}(resp.𝑗0∈{1,…,π‘š}) and β„“0∈{2,…,π‘š} such that 𝑑𝑗0𝑣ℓ0β‰’0. Let us suppose β„“0=2 and set 𝑣(𝑠)=((1βˆ’π‘ )1/𝛾𝑣2,𝑠1/𝛾𝑣2,𝑣3,…,𝑣𝑛). Then, 𝐴[](𝑣(𝑠))=1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[0,1βˆΆπ·π‘—0𝑠(𝑣(𝑠))>0βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—0(𝑣(𝑠))=βˆ’βˆž,limξ…žξ…žπ‘ β†’1βˆ’π‘‘π·π‘‘π‘ π‘—(𝑣(𝑠))<+∞as𝑗≠𝑗0.(2.133)

Proposition 2.33. Under assumption (2.129) (resp. (2.130)), system (2.131) with 𝐹≑0 has at least two weak solutions 𝑒0 and βˆ’π‘’0, and we have as 𝑖=1,…,𝑛: 𝑒0π‘–βˆˆπΏβˆž(Ξ©),𝑒0𝑖β‰₯0,𝑒0𝑖≒0.(2.134) Consequently, π‘Žβ‰‘0βŸΉπ‘’0π‘–βˆˆπΆ1,𝛼0π‘–β„“π‘œπ‘(Ξ©),π‘Žβ‰‘0and(2.129)holdswith𝑝≀𝛾1ξ€Ίξ€»resp.(2.130)holdsβŸΉπ‘’0𝑖>0.(2.135)

Proof. The statement is due to ([1], Theorem 2.2, Remark 2.3), [5], Proposition A.3, [6].

Proposition 2.34 (see [1], Theorems 3.1, 3.2). Under assumption (2.129) (resp. (2.130)), system (2.131) with 𝐹≒0 and β€–πΉβ€–βˆ— sufficiently small has at least two different weak solutions 𝑒1and𝑒2(𝑒𝑖=πœπ‘–π‘£π‘–,πœπ‘–=const.>0,𝑣1βˆˆπ‘‰+(𝐹)βˆ©π‘†πœ†,𝑣2βˆˆπ‘†πœ†βˆ©π‘‰+(𝐷2,…,π·π‘š)[resp.𝑣2βˆˆπ‘†πœ†βˆ©π‘‰+(𝐷1,…,π·π‘š)]), and we have 𝑒2β„Žβ‰’0 even if πΉβ„Žβ‰‘0.

Remark 2.35. If β‹ƒπ‘šπ‘—=2{π‘₯βˆˆΞ©βˆΆπ‘‘π‘—β‹ƒ(π‘₯)>0}[resp.π‘šπ‘—=1{π‘₯βˆˆΞ©βˆΆπ‘‘π‘—(π‘₯)>0}]=Ξ© (within a set with measure equal to zero), with the same reasoning used about (2.132), we get that ξ€·π‘–β„Ž16ξ€Έholdsβˆ€β„Žβˆˆ{1,…,𝑛}with𝔉=𝑉+(𝐹)βˆ©π‘†πœ†,(2.136) hence, 𝑒1β„Žβ‰’0 even if πΉβ„Žβ‰‘0.

3. Neumann Problems

Let Ξ©βŠ†π‘…π‘ be an open, bounded, and connected 𝐢0,1 set. Let |β‹…|𝑁,𝑝and̃𝑝 as in Section 2, 𝜎 the measure on πœ•Ξ©,𝜈 the outward unit normal to πœ•Ξ©,̂𝑝=(π‘βˆ’1)𝑝/(π‘βˆ’π‘) if 𝑝<𝑁,̂𝑝=∞ if 𝑝β‰₯𝑁. Let us assumeξ€·π‘Šπ‘Š=1,𝑝(Ξ©)𝑛(𝑛β‰₯1)with‖𝑣‖=𝑛ℓ=1ξ€œΞ©ξ€Ί||βˆ‡π‘£β„“||𝑝+||𝑣ℓ||𝑝ξƒͺ𝑑π‘₯1/π‘ξ€·π‘£βˆ€π‘£=1,…,π‘£π‘›ξ€Έπ΅βˆˆπ‘Š,ℓ𝑣ℓ=π‘βˆ’1ξ€œΞ©π‘β„“||𝑣ℓ||𝑝𝑑π‘₯βˆ€π‘£β„“βˆˆπ‘Š1,𝑝(Ξ©),whereπ‘β„“βˆˆπΏβˆžξπ΅(Ξ©)⧡{0},ℓ𝑣ℓ=π‘βˆ’1ξ€œπœ•Ξ©Μ‚π‘β„“||𝑣ℓ||π‘π‘‘πœŽβˆ€π‘£β„“βˆˆπ‘Š1,𝑝̂𝑏(Ξ©),whereβ„“βˆˆπΏβˆž(πœ•Ξ©)⧡{0}.(3.1) We note that for each π‘£β„“βˆˆπ‘Š1,𝑝(Ξ©) we set 𝛾0(𝑣ℓ)=𝑣ℓ where 𝛾0 is the trace operator from π‘Š1,𝑝(Ξ©) into π‘Š1βˆ’(1/𝑝),𝑝(πœ•Ξ©). Morever we consider the functionals 𝐴 (as in (𝑖11)) such thatβˆƒΜƒπ‘>0∢𝐴(𝑣)β‰₯π‘βˆ’1̃𝑐𝑛ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝑑π‘₯βˆ€π‘£βˆˆπ‘Š.(3.2) It is easy to verify the following.

Proposition 3.1. Let 𝑏ℓ,̂𝑏ℓβ‰₯0 as β„“=1,…,𝑛. Then, 𝑖13ξ€Έholdsifπœ†β„“,πœ‡β„“β‰€0,πœ†β„“+πœ‡β„“<0asβ„“=1,…,𝑛.(3.3)

Let us set 𝐼={1,…,𝑛} and for each πΌβˆ—βŠ†πΌπΆβˆ—=𝑐𝑐=1,…,π‘π‘›ξ€Έβˆˆπ‘…π‘›βˆΆπ‘β„“=0ifβ„“βˆˆπΌβ§΅πΌβˆ—,𝑐ℓ≠0forsomeβ„“βˆˆπΌβˆ—ξ€Ύ.(3.4) Let us introduce the conditions:(𝑖31)there exists πΌβˆ—βŠ†πΌβˆΆπ·π‘š(𝑐)<0forallπ‘βˆˆπΆβˆ—;(𝑖32)there exist πΌβˆ—βŠ†πΌ and π‘š1∈{1,…,π‘š}βˆΆπ·π‘š1(𝑐)<0 and 𝐴(𝑐)=0forallπ‘βˆˆπΆβˆ—.

Proposition 3.2. Let (𝑖31) holds with πΌβˆ—β‰ πΌ. Let 𝑉+(π·π‘š)β‰ βˆ…. Let 𝑏ℓ,̂𝑏ℓβ‰₯0 as β„“βˆˆπΌβ§΅πΌβˆ—. Then with πœ†β„“,πœ‡β„“β‰€0 and πœ†β„“+πœ‡β„“<0 as β„“βˆˆπΌβ§΅πΌβˆ—βˆƒπ›Ώβˆ—>0: (𝑖14) holds if|πœ†β„“|,|πœ‡β„“|β‰€π›Ώβˆ— as β„“βˆˆπΌβˆ—.

Proof. Reasoning by contradiction, for each π‘˜βˆˆβ„• there exist πœ†π‘˜β„“,πœ‡π‘˜β„“βˆˆ[βˆ’π‘˜βˆ’1,π‘˜βˆ’1], with β„“βˆˆπΌβˆ—, and π‘£π‘˜=(π‘£π‘˜1,…,π‘£π‘˜π‘›)βˆˆπ‘‰+(π·π‘š) such that β€–β€–π‘£π‘˜β€–β€–π‘βŽ§βŽͺ⎨βŽͺβŽ©π΄ξ€·π‘£>π‘˜π‘˜ξ€Έβˆ’ξ“β„“βˆˆπΌβ§΅πΌβˆ—π‘βˆ’1ξ‚Έπœ†β„“ξ€œΞ©π‘β„“||π‘£π‘˜β„“||𝑝𝑑π‘₯+πœ‡β„“ξ€œπœ•Ξ©Μ‚π‘β„“||π‘£π‘˜β„“||π‘ξ‚Ήβˆ’ξ“π‘‘πœŽβ„“βˆˆπΌβˆ—π‘βˆ’1ξ‚Έπœ†π‘˜β„“ξ€œΞ©π‘β„“||π‘£π‘˜β„“||𝑝𝑑π‘₯+πœ‡π‘˜β„“ξ€œπœ•Ξ©Μ‚π‘β„“||π‘£π‘˜β„“||𝑝,π‘‘πœŽ(3.5) then, set π‘€π‘˜=β€–π‘£π‘˜β€–βˆ’1π‘£π‘˜, we have π·π‘šξ€·π‘€π‘˜ξ€Έ>0,π‘βˆ’1⎧βŽͺ⎨βŽͺβŽ©Μƒπ‘π‘›ξ“β„“=1ξ€œΞ©||βˆ‡π‘€π‘˜β„“||𝑝𝑑π‘₯βˆ’β„“βˆˆπΌβ§΅πΌβˆ—ξ‚Έπœ†β„“ξ€œΞ©π‘β„“||π‘€π‘˜β„“||𝑝𝑑π‘₯+πœ‡β„“ξ€œπœ•Ξ©Μ‚π‘β„“||π‘€π‘˜β„“||π‘ξ‚ΉβŽ«βŽͺ⎬βŽͺβŽ­π‘‘πœŽ<π‘˜βˆ’1+ξ“β„“βˆˆπΌβˆ—π‘βˆ’1ξ‚Έπœ†π‘˜β„“ξ€œΞ©π‘β„“||π‘€π‘˜β„“||𝑝𝑑π‘₯+πœ‡π‘˜β„“ξ€œπœ•Ξ©Μ‚π‘β„“||π‘€π‘˜β„“||𝑝.π‘‘πœŽ(3.6) Since β€–π‘€π‘˜β€–=1, there exists π‘€βˆˆπ‘Š such that (within a subsequence) π‘€π‘˜βŸΆπ‘€weaklyinπ‘Š,π‘€π‘˜βŸΆπ‘€stronglyin(𝐿𝑝(Ξ©))𝑛,π‘€π‘˜βŸΆπ‘€stronglyin(𝐿𝑝(πœ•Ξ©))𝑛.(3.7) Consequently, from (3.6), passing to limit as π‘˜β†’+∞, we get π·π‘š(𝑀)β‰₯0,𝑛ℓ=1ξ€œΞ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯=0,β„“βˆˆπΌβ§΅πΌβˆ—ξ‚Έπœ†β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝𝑑π‘₯+πœ‡β„“ξ€œπœ•Ξ©Μ‚π‘β„“||𝑀ℓ||π‘ξ‚Ήπ‘‘πœŽ=0,(3.8) from which 𝑀=0, and then the contradiction 0=limπ‘˜β†’+βˆžβ€–π‘€π‘˜β€–=1.

Proposition 3.3. Let (𝑖31) holds with πΌβˆ—=𝐼. Let 𝑉+(π·π‘š)β‰ βˆ…. Then, βˆƒπ›Ώβˆ—ξ€·π‘–>0∢14ξ€Έ||πœ†holdsifβ„“||,||πœ‡β„“||β‰€π›Ώβˆ—asβ„“=1,…,𝑛.(3.9)

The proof as in Proposition 3.2.

Proposition 3.4. Let (𝑖32) holds with πΌβˆ—β‰ πΌ. Let βˆ«Ξ©π‘β„“βˆ«π‘‘π‘₯,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽ>0 as β„“βˆˆπΌβˆ—. Then, π‘‰βˆ’πœ†πœ‡ξ€·π·βˆ©π‘†π‘š1ξ€Έξ€·πœ†β‰ βˆ…βˆ€β„“,πœ‡β„“ξ€Έβ„“βˆˆπΌwithπœ†β„“,πœ‡β„“β‰₯0βˆ€β„“βˆˆπΌβˆ—,πœ†β„“+πœ‡β„“>0forsomeβ„“βˆˆπΌβˆ—.(3.10) Moreover, if 𝑏ℓ,̂𝑏ℓβ‰₯0 as β„“βˆˆπΌβ§΅πΌβˆ—, we have with πœ†β„“,πœ‡β„“β‰€0 and πœ†β„“+πœ‡β„“<0 as β„“βˆˆπΌβ§΅πΌβˆ—βˆƒπ›Ώβˆ—>0∢(𝑖15) holds if πœ†β„“,πœ‡β„“βˆˆ[0,π›Ώβˆ—]βˆ€β„“βˆˆπΌβˆ— and πœ†β„“+πœ‡β„“>0 for some β„“βˆˆπΌβˆ—.

Proof. The first statement is evident. Let us prove the second one. Reasoning by contradiction, for each π‘˜βˆˆβ„• there exist πœ†π‘˜β„“,πœ‡π‘˜β„“βˆˆ[0,π‘˜βˆ’1], with β„“βˆˆπΌβˆ— and πœ†π‘˜β„“+πœ‡π‘˜β„“>0 for some β„“βˆˆπΌβˆ—, and a sequence (π‘£π‘˜,β„Ž)β„Žβˆˆβ„• such that ξ€·π‘£π‘˜,β„Žξ€Έβ„Žβˆˆβ„•βŠ†π‘‰βˆ’πœ†π‘˜πœ‡π‘˜ξ€·π·βˆ©π‘†π‘š1πœ†ξ€Έξ€·π‘˜β„“=πœ†β„“,πœ‡π‘˜β„“=πœ‡β„“asβ„“βˆˆπΌβ§΅πΌβˆ—ξ€Έ,supβ„Žβ€–β€–π‘£π‘˜,β„Žβ€–β€–=+∞.(3.11)
Let {β„Žπ‘˜}βŠ†β„•be a strictly increasing sequence such that β€–π‘£π‘˜,β„Žπ‘˜β€–β†’+∞ as π‘˜β†’+∞. Let π‘€π‘˜=β€–π‘£π‘˜,β„Žπ‘˜β€–βˆ’1π‘£π‘˜,β„Žπ‘˜. Then, π·π‘š1(π‘€π‘˜)=βˆ’β€–π‘£π‘˜,β„Žπ‘˜β€–βˆ’π‘žπ‘š1 and π‘βˆ’1⎧βŽͺ⎨βŽͺβŽ©Μƒπ‘π‘›ξ“β„“=1ξ€œΞ©||βˆ‡π‘€π‘˜β„“||𝑝𝑑π‘₯βˆ’β„“βˆˆπΌβ§΅πΌβˆ—ξ‚Έπœ†β„“ξ€œΞ©π‘β„“||π‘€π‘˜β„“||𝑝𝑑π‘₯+πœ‡β„“ξ€œπœ•Ξ©Μ‚π‘β„“||π‘€π‘˜β„“||π‘ξ‚ΉβŽ«βŽͺ⎬βŽͺβŽ­π‘‘πœŽ<π‘βˆ’1ξ“β„“βˆˆπΌβˆ—ξ‚Έπœ†π‘˜β„“ξ€œΞ©π‘β„“||π‘€π‘˜β„“||𝑝𝑑π‘₯+πœ‡π‘˜β„“ξ€œπœ•Ξ©Μ‚π‘β„“||π‘€π‘˜β„“||𝑝,π‘‘πœŽ(3.12) moreover, there exists π‘€βˆˆπ‘Š such that (within a subsequence) π‘€π‘˜βŸΆπ‘€weaklyinπ‘Š,π‘€π‘˜βŸΆπ‘€stronglyin(𝐿𝑝(Ξ©))𝑛,π‘€π‘˜βŸΆπ‘€stronglyin(𝐿𝑝(πœ•Ξ©))𝑛.(3.13) Consequently, π·π‘š1(𝑀)=0,𝑛ℓ=1ξ€œΞ©||βˆ‡π‘€β„“||𝑝𝑑π‘₯=0,β„“βˆˆπΌβ§΅πΌβˆ—ξ‚Έπœ†β„“ξ€œΞ©π‘β„“||𝑀ℓ||𝑝𝑑π‘₯+πœ‡β„“ξ€œπœ•Ξ©Μ‚π‘β„“||𝑀ℓ||π‘ξ‚Ήπ‘‘πœŽ=0,(3.14) then 𝑀=0, and the contradiction 0=limπ‘˜β†’+βˆžβ€–π‘€π‘˜β€–=1.

Proposition 3.5. Let (𝑖32) holds with πΌβˆ—=𝐼. Let βˆ«Ξ©π‘β„“βˆ«π‘‘π‘₯,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽ>0 as β„“=1,…,𝑛. Then, π‘‰βˆ’πœ†πœ‡ξ€·π·βˆ©π‘†π‘š1ξ€Έβ‰ βˆ…ifπœ†β„“,πœ‡β„“β‰₯0βˆ€β„“βˆˆπΌandπœ†β„“+πœ‡β„“>0forsomeβ„“βˆˆπΌ,βˆƒπ›Ώβˆ—ξ€·π‘–>0∢15ξ€Έholdsifπœ†β„“,πœ‡β„“βˆˆξ€Ί0,π›Ώβˆ—ξ€»βˆ€β„“βˆˆπΌandπœ†β„“+πœ‡β„“>0forsomeβ„“βˆˆπΌ.(3.15)

The proof as in Proposition 3.4.

Remark 3.6. It is suitable to make some clarifications.(i)The assumption β€œπ‘β„“,̂𝑏ℓβ‰₯0” (see Propositions 3.1, 3.2, and 3.4) can be replaced by β€œπ‘β„“,̂𝑏ℓ do not change sign.” In this case we can choose πœ†β„“ and πœ‡β„“ such that πœ†β„“π‘β„“β‰€0,πœ‡β„“Μ‚π‘β„“β‰€0 and |πœ†β„“|+|πœ‡β„“|>0.(ii)The assumption β€œβˆ«Ξ©π‘β„“βˆ«π‘‘π‘₯,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽ>0” (see Propositions 3.4 and 3.5) can be replaced by β€œβˆ«Ξ©π‘β„“βˆ«π‘‘π‘₯,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽβ‰ 0”. In this case, we can choose πœ†β„“ and πœ‡β„“ such that πœ†β„“βˆ«Ξ©π‘β„“π‘‘π‘₯,πœ‡β„“βˆ«πœ•Ξ©Μ‚π‘β„“π‘‘πœŽβ‰₯0 and |πœ†β„“|+|πœ‡β„“|>0 for some β„“, with |πœ†β„“|,|πœ‡β„“|β‰€π›Ώβˆ— instead of πœ†β„“,πœ‡β„“βˆˆ[0,π›Ώβˆ—].(iii)When for each β„“βˆˆ{1,…,𝑛}𝑏ℓ,̂𝑏ℓ do not change sign, then the conclusion of the Proposition 3.2 [resp. Proposition 3.3] holds even if πœ†β„“π‘β„“,πœ‡β„“Μ‚π‘β„“β‰€0 and |πœ†β„“|+|πœ‡β„“|>π›Ώβˆ— as β„“βˆˆπΌβˆ—(resp. as β„“=1,…,𝑛).
In order to simplify the presentation of the applications, we suppose in the next π‘β„“βˆˆπΏβˆž(Ξ©)⧡{0} andΜ‚π‘β„“βˆˆπΏβˆž(πœ•Ξ©)⧡{0}, while the additional assumptions on 𝑏ℓ,̂𝑏ℓ and the assumptions on βˆ«Ξ©π‘β„“βˆ«π‘‘π‘₯,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽ (the same of Propositions 3.1, 3.2, 3.4, and 3.5) will be pointed out case by case.

Passing to the applications (with 𝑛>1), we recall that in [3] Pohozaev and VΓ©ron in the case 𝑛=1 have studied the Neumann problem:ξ‚€||||βˆ’divβˆ‡π‘’π‘βˆ’2ξ‚βˆ‡π‘’=πœ†π‘(π‘₯)|𝑒|π‘βˆ’2𝑒+𝑐(π‘₯)|𝑒|π‘ βˆ’2𝑒+π‘Ž(π‘₯)|𝑒|π‘žβˆ’2||||𝑒inΞ©,βˆ‡π‘’π‘βˆ’2πœ•π‘’πœ•πœˆ=π‘˜(π‘₯)|𝑒|π‘Ÿβˆ’2𝑒onπœ•Ξ©.(3.16) The existence theorems proved by these authors can be got by using some results of ([1], Theorems 2.1, 2.2, 4.1, and 4.2; Remarks 2.1, 2.3, 4.1, and 4.4), Propositions 3.3 and 3.5.

Application 3.7. Let for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝑑π‘₯,𝐷1(𝑣)=π‘ž1βˆ’1βŽ‘βŽ’βŽ’βŽ£ξ€œπœ•Ξ©ξƒ©π‘›ξ“β„“=1𝑑ℓ||𝑣ℓ||𝛾ξƒͺπ‘ž1/π›Ύπ‘‘πœŽβˆ’π‘›ξ“β„“=1ξ€œπœ•Ξ©ξπ‘‘β„“||𝑣ℓ||π‘ž1⎀βŽ₯βŽ₯⎦,π‘‘πœŽ(3.17) where 1<𝛾<π‘ž1<̂𝑝,π‘ž1≠𝑝,𝑑ℓ,ξπ‘‘β„“βˆˆπΏβˆž(πœ•Ξ©),𝑑ℓ,𝑑ℓ>0.(3.18) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖||inΞ©,βˆ‡π‘’π‘–||π‘βˆ’2πœ•π‘’π‘–πœ•πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+𝑛ℓ=1𝑑ℓ||𝑒ℓ||𝛾ξƒͺ(π‘ž1/𝛾)βˆ’1𝑑𝑖||𝑒𝑖||π›Ύβˆ’2π‘’π‘–βˆ’ξπ‘‘π‘–||𝑒𝑖||π‘ž1βˆ’2𝑒𝑖onπœ•Ξ©as𝑖=1,…,𝑛.(3.19) Let us introduce the conditions: ξ€œπœ•Ξ©ξƒ©π‘›ξ“β„“=1𝑑ℓξƒͺπ‘ž1/π›Ύξ€œπ‘‘πœŽ<πœ•Ξ©ξξ‚€ξξ‚†ξπ‘‘π‘‘π‘‘πœŽπ‘‘=min1𝑑,…,𝑛,(3.20)βˆƒΞ“βŠ†πœ•Ξ©βˆΆπœŽ(Ξ“)>0,𝑛ℓ=1𝑑ℓξƒͺπ‘ž1/𝛾>𝑛ℓ=1ξπ‘‘β„“ξ€œonΞ“,(3.21)Ξ©π‘β„“ξ€œπ‘‘π‘₯>0,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽ>0asβ„“=1,…,𝑛.(3.22) Evidently (3.20) ⇒𝐷1(𝑐)<0forallπ‘βˆˆπ‘…π‘›β§΅{0}. Moreover (3.21) ⇒𝑉+(𝐷1)β‰ βˆ… (Proposition A.2). Hence (Propositions 3.3 and 3.5) βŸΉξ€·(3.20)and(3.21)βˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έ||πœ†holdsifβ„“||,||πœ‡β„“||β‰€π›Ώβˆ—1ξ€Έ,βŸΉξ€·βˆ€β„“βˆˆ{1,…,𝑛}(3.23)(3.20)and(3.22)βˆƒπ›Ώβˆ—2𝑖>015ξ€Έholdsifπœ†β„“,πœ‡β„“βˆˆξ€Ί0,π›Ώβˆ—2ξ€»βˆ€β„“βˆˆ{1,…,𝑛},πœ†β„“+πœ‡β„“ξ€Έ.>0forsomeβ„“(3.24)

Proposition 3.8 (see ([1], Theorems 2.1 and 4.1; Remarks 2.1 and 4.1); Proposition A.4; [5, 6]). Under assumption (3.18), we have:(i)When (3.20) and (3.21) hold, with πœ†β„“,πœ‡β„“ as in (3.23) system (3.19) has at least two weak solutions 𝑒0 and βˆ’π‘’0(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†πœ‡βˆ©π‘‰+(𝐷1)), and it results in 𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0π‘–β„“π‘œπ‘(Ξ©),𝑒0𝑖β‰₯0as𝑖=1,…,𝑛,𝑒0𝑖>0if𝑒0𝑖≒0;(3.25)(ii)When (3.20) and (3.22) hold, with πœ†β„“,πœ‡β„“ as in (3.24) system (3.19) has at least two weak solutions 𝑒 and βˆ’π‘’(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†πœ‡βˆ©π‘†(𝐷1)), and it results inπ‘’π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,π›Όπ‘–β„“π‘œπ‘(Ξ©),𝑒𝑖β‰₯0as𝑖=1,…,𝑛,𝑒𝑖>0if𝑒𝑖≒0.(3.26) Consequently, when (3.20)–(3.22) hold, with πœ†β„“,πœ‡β„“ as in (3.24) and min{π›Ώβˆ—1,π›Ώβˆ—2} instead of π›Ώβˆ—2 system (3.19) has at least four different weak solutions.

Proposition 3.9. If 𝛾<𝑝<π‘ž1, then 𝑒0𝑖>0as𝑖=1,…𝑛.

Proof. It is sufficient (Remark 1.1) to verify that ξ€·π‘–β„Ž16ξ€Έholdsasβ„Ž=1,…,𝑛with𝔉=π‘†πœ†πœ‡βˆ©π‘‰+𝐷1ξ€Έ.(3.27)
Let 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘‰+(𝐷1)βˆ©π‘†πœ†πœ‡. Let, for example, 𝑣1≑0. Since βˆ«πœ•Ξ©(βˆ‘β„“β‰ 1𝑑ℓ|𝑣ℓ|𝛾)π‘ž1/π›Ύπ‘‘πœŽ>0, there exists Ξ“+βŠ†πœ•Ξ© such that πœŽξ€·Ξ“+>0,β„“β‰ 1𝑑ℓ||𝑣ℓ||𝛾>0onΞ“+.(3.28) Let π•‚βŠ†Ξ© a compact set and Ξ©β€² an open set such that ||𝕂||𝑁>0,π•‚βŠ†Ξ©ξ…ž,Ξ©ξ…žβŠ†Ξ©.(3.29) Since Propositions A.1 and A.2, there exist a compact set Γ+βŠ†Ξ“+, with ξΞ“πœŽ(+)>0, and (πœ‘1πœ€)0<πœ€<πœ€0,(πœ‘2πœ€)0<πœ€<πœ€0βŠ†πΆβˆž0(𝑅𝑁) such that 0β‰€πœ‘1πœ€β‰€1,suppπœ‘1πœ€βŠ†Ξ©ξ…ž,πœ‘1πœ€βŸΆπœ’stronglyinπΏπ‘ ξ€œ(Ξ©)Ξ©||βˆ‡πœ‘1πœ€||𝑠𝑑π‘₯⟢+∞asπœ€βŸΆ0+[[,βˆ€π‘ βˆˆ1,+∞0β‰€πœ‘2πœ€β‰€1,suppπœ‘2πœ€βŠ†π‘…π‘β§΅Ξ©β€²,πœ‘2πœ€βŸΆξπœ’stronglyinπΏπ‘ ξ€œ(πœ•Ξ©),Ξ©πœ‘π‘ 2πœ€π‘‘π‘₯⟢0asπœ€βŸΆ0+[[,βˆ€π‘ βˆˆ1,+∞(3.30) where πœ’(resp.ξπœ’) is the characteristic function of Γ𝕂(resp.+). Let us choose πœ€ such that 𝛿=π‘βˆ’1ξ‚Έξ€œΞ©||βˆ‡πœ‘πœ€||𝑝𝑑π‘₯βˆ’πœ†1ξ€œΞ©π‘1πœ‘π‘πœ€π‘‘π‘₯βˆ’πœ‡1ξ€œπœ•Ξ©Μ‚π‘1πœ‘π‘πœ€ξ‚Ήξ€œπ‘‘πœŽ>0,πœ•Ξ©ξƒ©ξ“β„“β‰ 1𝑑ℓ||𝑣ℓ||𝛾ξƒͺ(π‘ž1/𝛾)βˆ’1𝑑1πœ‘π›Ύπœ€ξ€·πœ‘π‘‘πœŽ>0πœ€=πœ‘1πœ€+πœ‘2πœ€ξ€Έ,(3.31) and we set 𝑣(𝑠)=((1βˆ’π‘ )1/π‘π›Ώβˆ’1/π‘πœ‘πœ€,𝑠1/𝑝𝑣2,…,𝑠1/𝑝𝑣𝑛). Then, π»πœ†πœ‡[](𝑣(𝑠))=1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[0,1∢𝐷1𝑠(𝑣(𝑠))>0βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ 1(𝑣(𝑠))=βˆ’βˆž.(3.32)

Proposition 3.10. If π‘‘π‘ž1β„“/𝛾<ξπ‘‘β„“πœ†π‘Žπ‘ β„“=1,…,𝑛,(3.33)β„“+πœ‡β„“>0π‘Žπ‘ β„“=1,…,𝑛,(3.34) then 𝑒𝑖>0π‘Žπ‘ π‘–=1,…,𝑛.

Proof. We recall that ([1], Theorem 4.1) π»πœ†πœ‡ξ€·π‘£ξ€Έξ‚†π»=infπœ†πœ‡(𝑣)βˆΆπ‘£βˆˆπ‘‰βˆ’πœ†πœ‡ξ€·π·βˆ©π‘†1.(3.35) Reasoning by contradiction let, for example, 𝑣1≑0. As 𝑐1=const.>0 and 𝑔(𝑠,𝜏)=𝐷1(𝑠𝑐1,πœπ‘£2,…,πœπ‘£π‘›)=π‘ž1βˆ’1[βˆ«πœ•Ξ©(𝑑1𝑠𝛾𝑐𝛾1+πœπ›Ύβˆ‘β„“β‰ 1𝑑ℓ(𝑣ℓ)𝛾)π‘ž1β§΅π›Ύπ‘‘πœŽβˆ’π‘ π‘ž1π‘π‘ž11βˆ«πœ•Ξ©ξπ‘‘1πœπ‘‘πœŽβˆ’π‘ž1βˆ‘β„“β‰ 1βˆ«πœ•Ξ©ξπ‘‘β„“(𝑣ℓ)π‘ž1π‘‘πœŽ] for all 𝑠,𝜏β‰₯0, we have 𝑔(0,𝜏)=βˆ’πœπ‘ž1>βˆ’1forall𝜏∈]0,1[ and since (3.33) lim𝑠→+βˆžπ‘”(𝑠,𝜏)=βˆ’βˆžforall𝜏β‰₯0. Thenforall𝜏∈]0,1[, it is possible to choose 𝑠(𝜏)>0 such that 𝑔(𝑠(𝜏),𝜏)=βˆ’1. Let us add that there exist 𝑠0>0 and 𝜏0∈]0,1[ such that (πœ•π‘”/πœ•π‘ )(𝑠,𝜏)>0forall(𝑠,𝜏)∈]0,𝑠0[x]𝜏0,1[.
Let now {πœπ‘›}βŠ†]𝜏0,1[ and limπœπ‘›=1. Since 𝑔(𝑠(πœπ‘›),πœπ‘›)=βˆ’1,{𝑠(πœπ‘›)} is necessarily bounded. Then (within a subsequence) lim𝑠(πœπ‘›)=πœ”β‰₯𝑠0. Consequently, from the inequality: π»πœ†πœ‡ξ€·π‘£ξ€Έβ‰€π»πœ†πœ‡ξ€·π‘£ξ€·πœπ‘›ξ€·πœξ€Έξ€Έ,where𝑣𝑛=ξ€·π‘ ξ€·πœπ‘›ξ€Έπ‘1,πœπ‘›π‘£2,…,πœπ‘›π‘£π‘›ξ€Έβˆˆπ‘‰βˆ’πœ†πœ‡ξ€·π·βˆ©π‘†1ξ€Έ,(3.36) as 𝑛→+∞ and from (3.34), we get the contradiction: π»πœ†πœ‡ξ€·π‘£ξ€Έβ‰€βˆ’π‘βˆ’1πœ”π‘π‘π‘1ξ‚΅πœ†1ξ€œΞ©π‘1𝑑π‘₯+πœ‡1ξ€œπœ•Ξ©Μ‚π‘1ξ‚Άπ‘‘πœŽ+π»πœ†πœ‡ξ€·π‘£ξ€Έ<π»πœ†πœ‡ξ€·π‘£ξ€Έ.(3.37)

Remark 3.11. Let us note that the conditions (3.20), (3.21), and (3.33) are compatible.

Application 3.12. Let for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘βˆ’1ξƒ¬π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||π‘ξ€œπ‘‘π‘₯+Ξ©ξ‚΅||βˆ‡π‘£π‘›||𝛾+ξ€œπœ•Ξ©||𝑣𝑛||π›Ύξ‚Άπ‘‘πœŽπ‘/𝛾,𝐷𝑑π‘₯1(𝑣)=π‘ž1βˆ’1ξƒ¬π‘›βˆ’1ℓ=1ξ€œΞ©πœŒβ„“||𝑣ℓ+𝑣𝑛||π‘ž1βˆ’1𝑣ℓ+𝑣𝑛𝑑π‘₯βˆ’π‘›ξ“β„“=1ξ€œπœ•Ξ©ξπ‘‘β„“||𝑣ℓ||π‘ž1ξƒ­,π‘‘πœŽ(3.38) where 1<𝛾<𝑝,1<π‘ž1<̂𝑝,π‘ž1≠𝑝,πœŒβ„“βˆˆπΏβˆž(Ξ©),πœŒβ„“ξπ‘‘>0,β„“βˆˆπΏβˆžξπ‘‘(πœ•Ξ©),β„“>0.(3.39) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+πœŒπ‘–||𝑒𝑖+𝑒𝑛||π‘ž1βˆ’1||inΞ©as𝑖=1,…,π‘›βˆ’1,βˆ’divβˆ‡π‘’π‘›||𝛾+ξ€œπœ•Ξ©||𝑒𝑛||π›Ύξ‚Άπ‘‘πœŽ(𝑝/𝛾)βˆ’1||βˆ‡π‘’π‘›||π›Ύβˆ’2βˆ‡π‘’π‘›ξƒ­=πœ†π‘›π‘π‘›||𝑒𝑛||π‘βˆ’2𝑒𝑛+π‘›βˆ’1ℓ=1πœŒβ„“||𝑒ℓ+𝑒𝑛||π‘ž1βˆ’1||inΞ©,βˆ‡π‘’π‘–||π‘βˆ’2πœ•π‘’π‘–πœ•πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2π‘’π‘–βˆ’ξπ‘‘π‘–||𝑒𝑖||π‘ž1βˆ’2𝑒𝑖||onπœ•Ξ©as𝑖=1,…,π‘›βˆ’1,βˆ‡π‘’π‘›||𝛾+ξ€œπœ•Ξ©||𝑒𝑛||π›Ύξ‚Άπ‘‘πœŽ(𝑝/𝛾)βˆ’1||βˆ‡π‘’π‘›||π›Ύβˆ’2πœ•π‘’π‘›πœ•πœˆ=πœ‡π‘›Μ‚π‘π‘›||𝑒𝑛||π‘βˆ’2π‘’π‘›βˆ’ξƒ¬ξ€œΞ©ξ‚΅||βˆ‡π‘’π‘›||𝛾+ξ€œπœ•Ξ©||𝑒𝑛||π›Ύξ‚Άπ‘‘πœŽ(𝑝/𝛾)βˆ’1ξƒ­||𝑒𝑑π‘₯𝑛||π›Ύβˆ’2π‘’π‘›βˆ’ξπ‘‘π‘›||𝑒𝑛||π‘ž1βˆ’2𝑒𝑛onπœ•Ξ©.(3.40) Pointing out that 𝑉+(𝐷1)β‰ βˆ…, we advance the conditions ξ€œΞ©ξƒ©π‘›βˆ’1ℓ=1πœŒβ„“ξƒͺξ€œπ‘‘π‘₯<πœ•Ξ©ξξ‚€ξξ‚†ξπ‘‘π‘‘π‘‘πœŽπ‘‘=min1𝑑,…,𝑛,ξ€œξ‚‡ξ‚(3.41)Ξ©π‘β„“ξ€œπ‘‘π‘₯>0,πœ•Ξ©Μ‚π‘β„“π‘π‘‘πœŽ>0asβ„“=1,…,π‘›βˆ’1,(3.42)𝑛̂𝑏β‰₯0,𝑛β‰₯0.(3.43) Taking into account that (3.41)⟹𝐷1𝑐1,…,π‘π‘›βˆ’1𝑐,0<0βˆ€1,…,π‘π‘›βˆ’1ξ€Έβˆˆπ‘…π‘›βˆ’1⧡{0},(3.44) we have (Propositions 3.2 and 3.4) βŸΉξ€·(3.41)and(3.43)withπœ†π‘›,πœ‡π‘›β‰€0,πœ†π‘›+πœ‡π‘›<0βˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έ||πœ†holdsifβ„“||,||πœ‡β„“||β‰€π›Ώβˆ—1ξ€Έ,βŸΉξ€·asβ„“=1,…,π‘›βˆ’1(3.45)(3.41)-(3.43)withπœ†π‘›,πœ‡π‘›β‰€0,πœ†π‘›+πœ‡π‘›<0βˆƒπ›Ώβˆ—2𝑖>0∢15ξ€Έholdsifπœ†β„“,πœ‡β„“βˆˆξ€Ί0,π›Ώβˆ—2ξ€»asβ„“=1,…,π‘›βˆ’1andπœ†β„“+πœ‡β„“>0forsomeβ„“).(3.46)

Proposition 3.13 . (see ([1], Theorems 2.1 and 4.1; Remark 2.1); Proposition A.4; [5, 6]). Under assumption (3.39), we have(i)When (3.41) and (3.43) hold, with πœ†β„“,πœ‡β„“ as in (3.45) system (3.40) has at least one weak solution 𝑒0 (𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†πœ‡βˆ©π‘‰+(𝐷1)), and it results in 𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0π‘–β„“π‘œπ‘(Ξ©),𝑒0𝑖𝑒>0as𝑖=1,…,π‘›βˆ’1,0π‘›βˆˆπΏβˆž(Ξ©),𝑒0𝑛β‰₯0,𝑒0𝑛≒0;(3.47)(ii)When (3.41)–(3.43) hold, with πœ†β„“,πœ‡β„“ as in (3.46) system (3.40) has at least one weak solution 𝑒(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†πœ‡βˆ©π‘†(𝐷1)), and it results in 𝑒𝑖≒0 as 𝑖=1,…,𝑛.
Consequently, when (3.41)–(3.43) hold, with πœ†β„“,πœ‡β„“ as in (3.46) and min{π›Ώβˆ—1,π›Ώβˆ—2} instead of π›Ώβˆ—2 system (3.40) has at least two different weak solutions.

About the properties of 𝑒0𝑖 and 𝑒𝑖 expressed by Proposition 3.13, it is necessary to remark that if𝑒=(𝑒1,…,𝑒𝑛)isanontrivialweaksolutiontosystem (3.40), then 𝑒𝑖≒0 as 𝑖=1,…,𝑛. In fact,𝑒𝑛≑0βŸΉπ‘’π‘–β‰‘0as𝑖=1,…,π‘›βˆ’1,𝑒𝑖≑0forsomeπ‘–βˆˆ{1,…,π‘›βˆ’1}βŸΉπ‘’π‘›β‰‘0.(3.48)

Application 3.14. Let 𝑛=2 and for any 𝑣=(𝑣1,𝑣2)βˆˆπ‘Š: 𝐴(𝑣)=𝑝2βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝑑π‘₯,𝐷𝑗(𝑣)=π‘žπ‘—βˆ’1ξ€œΞ©πœŒπ‘—|||||2ℓ=1𝑑𝑗ℓ||𝑣ℓ||𝛾𝑗|||||π‘žπ‘—/𝛾𝑗𝐷𝑑π‘₯as𝑗=1,…,π‘šβˆ’1,π‘š(𝑣)=π‘žπ‘šβˆ’1ξ€œπœ•Ξ©πœŒπ‘šξƒ©2ℓ=1||𝑣ℓ||π›Ύπ‘šξƒͺπ‘žπ‘š/π›Ύπ‘šπ‘‘πœŽ,(3.49) where 1<𝛾𝑗<π‘žπ‘—as𝑗=1,…,π‘š,𝑝<π‘ž1<β‹―<π‘žπ‘š<̂𝑝,πœŒπ‘—βˆˆπΏβˆž(Ξ©),πœŒπ‘—π‘‘<0,π‘—β„“βˆˆπΏβˆž(Ξ©)⧡{0},πœŒπ‘šβˆˆπΏβˆž(πœ•Ξ©).(3.50) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+π‘šβˆ’1𝑗=1πœŒπ‘—|||||2ℓ=1𝑑𝑗ℓ||𝑒ℓ||𝛾𝑗|||||(π‘žπ‘—/𝛾𝑗)βˆ’22ℓ=1𝑑𝑗ℓ||𝑒ℓ||𝛾𝑗ξƒͺ𝑑𝑗𝑖||𝑒𝑖||π›Ύπ‘—βˆ’2𝑒𝑖||inΞ©,βˆ‡π‘’π‘–||π‘βˆ’2πœ•π‘’π‘–πœ•πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+πœŒπ‘šξƒ©2ℓ=1||𝑒ℓ||π›Ύπ‘šξƒͺ(π‘žπ‘š/π›Ύπ‘š)βˆ’1||𝑒𝑖||π›Ύπ‘šβˆ’2𝑒𝑖onπœ•Ξ©as𝑖=1,2.(3.51) Let us introduce the conditions: 𝜌+π‘šξ€·β‰’0βŸΉπ‘‰+ξ€·π·π‘šξ€Έξ€Έξ€œβ‰ βˆ…(PropositionA.2),(3.52)πœ•Ξ©πœŒπ‘šξ€·π‘‘πœŽ<0βŸΉπ·π‘šξ€·π‘1,𝑐2𝑐<0βˆ€1,𝑐2ξ€Έβˆˆπ‘…2β§΅ξ€Έξ€œ{0},(3.53)Ξ©π‘β„“ξ€œπ‘‘π‘₯>0,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽ>0asβ„“=1,2,(3.54) we have (Propositions 3.3 and 3.5) ξ€·(3.52)and(3.53)βŸΉβˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έ||πœ†holdsifβ„“||,||πœ‡β„“||β‰€π›Ώβˆ—1ξ€ΈβŸΉξ€·asβ„“=1,2,(3.55)(3.53)and(3.54)βˆƒπ›Ώβˆ—2𝑖>0∢15ξ€Έholdsifπœ†β„“,πœ‡β„“βˆˆξ€Ί0,π›Ώβˆ—2ξ€»asβ„“=1,2,πœ†β„“+πœ‡β„“ξ€Έ.>0forsomeβ„“(3.56)

Proposition 3.15 (see ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; [5]). Under assumption (3.50), we have(i)When (3.52) and (3.53) hold, with πœ†β„“,πœ‡β„“ as in (3.55) system (3.51) has at least two weak solutions 𝑒0 and βˆ’π‘’0(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†πœ‡βˆ©π‘‰+(π·π‘š)), and it results in 𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0π‘–β„“π‘œπ‘(Ξ©),𝑒0𝑖β‰₯0as𝑖=1,2;(3.57)(ii)When (3.53) and (3.54) hold, with πœ†β„“,πœ‡β„“ as in (3.56) system (3.51) has at least two weak solutions 𝑒 and βˆ’π‘’(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†πœ‡βˆ©π‘†(π·π‘š)), and it results in π‘’π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,π›Όπ‘–β„“π‘œπ‘(Ξ©),𝑒𝑖β‰₯0as𝑖=1,2.(3.58)
Consequently, when (3.52)–(3.54) hold, with πœ†β„“,πœ‡β„“ as in (3.56), and min{π›Ώβˆ—1,π›Ώβˆ—2} instead of π›Ώβˆ—2 system (3.51) has at least four different weak solutions.

Proposition 3.16. Under the assumption 𝑝≀2𝛾𝑗 and 𝑑𝑗1⋅𝑑𝑗2<0 as 𝑗=1,…,π‘šβˆ’1, we have(i)if 𝛾𝑗0<𝑝 for some 𝑗0∈{1,…,π‘š}, then 𝑒0𝑖>0 as 𝑖=1,2;(ii)if 𝛾𝑗0<π›Ύπ‘šβ‰€π‘ for some 𝑗0∈{1,…,π‘šβˆ’1}, then𝑒𝑖>0as𝑖=1,2.

Proof. First of all 𝑒0𝑖 is a weak supersolution to the equation: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+π‘šβˆ’1𝑗=1πœŒπ‘—||𝑑𝑗1𝑒01𝛾𝑗+𝑑𝑗2𝑒02𝛾𝑗||(π‘žπ‘—/𝛾𝑗)βˆ’2𝑑2𝑗𝑖||𝑒𝑖||2π›Ύπ‘—βˆ’2𝑒𝑖inΞ©.(3.59) Also, 𝑒𝑖 has a similar property. Then [6] it is sufficient to verify that 𝑒0𝑖≒0,(3.60)𝑒𝑖≒0.(3.61) About (3.60), let us prove (Remark 1.1) that ξ€·π‘–β„Ž16ξ€Έholdsasβ„Ž=1,2with𝔉=π‘†πœ†πœ‡βˆ©π‘‰+ξ€·π·π‘šξ€Έ.(3.62) Let 𝑣=(𝑣1,𝑣2)βˆˆπ‘‰+(π·π‘š)βˆ©π‘†πœ†πœ‡. Let, for example, 𝑣1≑0. Let ||𝕂||π•‚βŠ†Ξ©acompactsetβˆΆπ‘>0,𝑣2Ξ©β‰’0in𝕂,ξ…žanopensetβˆΆπ•‚βŠ†Ξ©ξ…ž,Ξ©ξ…žβŠ†Ξ©,Ξ“βŠ†πœ•Ξ©βˆΆπœŽ(Ξ“)>0,πœŒπ‘š||𝑣2||>0onΞ“.(3.63) Since Propositions A.1 and A.2, there exists πœ‘βˆˆπΆβˆž0(𝑅𝑁), with 0β‰€πœ‘β‰€1 and suppπœ‘βŠ†Ξ©ξ…žβˆͺ(π‘…π‘β§΅Ξ©ξ…ž), such that ξ€œΞ©πœŒπ‘—||𝑑𝑗2||𝑣2||𝛾𝑗||(π‘žπ‘—/𝛾𝑗)βˆ’2||𝑣2||π›Ύπ‘—πœ‘π›Ύπ‘—π‘‘π‘—1𝑑𝑗2ξ€œπ‘‘π‘₯>0as𝑗=1,…,π‘šβˆ’1,πœ•Ξ©πœŒπ‘š||𝑣2||π‘žπ‘šβˆ’π›Ύπ‘šπœ‘π›Ύπ‘šπ‘‘πœŽ>0,𝛿=π‘βˆ’1ξ‚Έξ€œΞ©||||βˆ‡πœ‘π‘π‘‘π‘₯βˆ’πœ†1ξ€œΞ©π‘1πœ‘π‘π‘‘π‘₯βˆ’πœ‡1ξ€œπœ•Ξ©Μ‚π‘1πœ‘π‘ξ‚Ήπ‘‘πœŽ>0.(3.64) Then with 𝑣(𝑠)=((1βˆ’π‘ )1/π‘π›Ώβˆ’1/π‘πœ‘,𝑠1/𝑝𝑣2), we have π»πœ†πœ‡[](𝑣(𝑠))=1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[0,1βˆΆπ·π‘šξ€Ίπ‘ (𝑣(𝑠))>0βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—0(𝑣(𝑠))=βˆ’βˆž,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—(𝑣(𝑠))<+∞as𝑗≠𝑗0.(3.65) Passing to (3.61), let us introduce the function πœ“(𝑑,𝑣)=π‘π‘‘π‘βˆ’1π»πœ†πœ‡βˆ‘(𝑣)βˆ’π‘šπ‘—=1π‘žπ‘—π‘‘π‘žπ‘—βˆ’1𝐷𝑗(𝑣), and let us remember that ([1], Theorem 4.2) βˆ€π‘£βˆˆπ‘‰βˆ’πœ†πœ‡ξ€·π·βˆ©π‘†π‘šξ€Έξ‚ξ‚πΈξ€·βˆƒβˆ£π‘‘(𝑣)>0βˆΆπœ“(𝑑(𝑣),𝑣)=0,𝑣𝐸=inf(𝑣)βˆΆπ‘£βˆˆπ‘‰βˆ’πœ†πœ‡ξ€·π·βˆ©π‘†π‘šξ€Έξ‚‡,(3.66) where 𝐸(𝑣)=(𝑑(𝑣))π‘π»πœ†πœ‡βˆ‘(𝑣)βˆ’π‘šπ‘—=1(𝑑(𝑣))π‘žπ‘—π·π‘—(𝑣).
Reasoning by contradiction, let us set, for example, 𝑣1≑0 and set 𝑣(𝑠)=((1βˆ’π‘ )1/π›Ύπ‘šπ‘£2,𝑠1/π›Ύπ‘šπ‘£2). Since π·π‘š[](𝑣(𝑠))=βˆ’1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[0,1βˆΆπ»πœ†πœ‡ξ€Ίπ‘ (𝑣(𝑠))<0βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—0(𝑣(𝑠))=βˆ’βˆž,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ π‘—ξ€½π‘—(𝑣(𝑠))<+∞asπ‘—βˆˆ{1,…,π‘šβˆ’1}⧡0ξ€Ύ,(3.67) as in Proposition 2.24, we get the contradiction: 𝐸𝑣≀𝐸𝐸(𝑣(𝑠))<π‘£ξ€Έξ€Ίπ‘ βˆ€π‘ βˆˆ1𝑠,1ξ€Ίξ€·0≀𝑠1ξ€Έ.<1(3.68)

Application 3.17. Let 𝑛>2 and set for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝐷𝑑π‘₯,𝑗(𝑣)=π‘žπ‘—π‘›βˆ’1ℓ=1β„“β‰ π‘—ξ€œΞ©πœŒπ‘—||𝑑𝑗𝑗||𝑣𝑗||𝛾𝑗+𝑑𝑗ℓ||𝑣ℓ||𝛾𝑗||π‘žπ‘—/𝛾𝑗𝐷𝑑π‘₯as𝑗=1,…,𝑛,𝑛+1(𝑣)=π‘žβˆ’1𝑛+1ξ€œπœ•Ξ©πœŒπ‘›+1𝑛ℓ=1||𝑣ℓ||𝛾𝑛+1ξƒͺπ‘žπ‘›+1/𝛾𝑛+1π‘‘πœŽ,(3.69) where 1<𝛾𝑗<π‘žπ‘—as𝑗=1,…,𝑛+1,𝑝<π‘ž1<β‹―<π‘žπ‘›+1<̂𝑝,πœŒπ‘—βˆˆπΏβˆž(Ξ©),πœŒπ‘—π‘‘<0,π‘—β„“βˆˆπΏβˆž(Ξ©)⧡{0},πœŒπ‘›+1∈𝐿∞(πœ•Ξ©).(3.70) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+ξ“β„“β‰ π‘–πœŒπ‘–||𝑑𝑖𝑖||𝑒𝑖||𝛾𝑖+𝑑𝑖ℓ||𝑒ℓ||𝛾𝑖||(π‘žπ‘–/𝛾𝑖)βˆ’2𝑑𝑖𝑖||𝑒𝑖||𝛾𝑖+𝑑𝑖ℓ||𝑒ℓ||𝛾𝑖𝑑𝑖𝑖||𝑒𝑖||π›Ύπ‘–βˆ’2𝑒𝑖+ξ“π‘—β‰ π‘–πœŒπ‘—||𝑑𝑗𝑗||𝑒𝑗||𝛾𝑗+𝑑𝑗𝑖||𝑒𝑖||𝛾𝑗||(π‘žπ‘—/𝛾𝑗)βˆ’2𝑑𝑗𝑗||𝑒𝑗||𝛾𝑗+𝑑𝑗𝑖||𝑒𝑖||𝛾𝑗𝑑𝑗𝑖||𝑒𝑖||π›Ύπ‘—βˆ’2𝑒𝑖||inΞ©,βˆ‡π‘’π‘–||π‘βˆ’2πœ•π‘’π‘–πœ•πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+πœŒπ‘›+1𝑛ℓ=1||𝑒ℓ||𝛾𝑛+1ξƒͺ(π‘žπ‘›+1/𝛾𝑛+1)βˆ’1||𝑒𝑖||𝛾𝑛+1βˆ’2𝑒𝑖onπœ•Ξ©as𝑖=1,…,𝑛.(3.71) Let us make the assumptions: 𝜌+𝑛+1ξ€œβ‰’0,πœ•Ξ©πœŒπ‘›+1ξ€œπ‘‘πœŽ<0,Ξ©π‘β„“ξ€œπ‘‘π‘₯>0,πœ•Ξ©Μ‚π‘β„“π‘‘πœŽ>0asβ„“=1,…,𝑛.(3.72) About Neumann’s problem (3.71), we have an existence result similar to the one of Proposition 3.15 related to system (3.51). About the positive sign of the components of the weak solutions 𝑒0 and 𝑒 to system (3.71), as in Proposition 3.16, we show.Proposition 3.18. Under the assumption 𝑝≀2𝛾𝑗 as 𝑗=1,…,𝑛 and 𝑑𝑗𝑗⋅𝑑𝑗ℓ<0 as 𝑗,β„“βˆˆ{1,…,𝑛} with ℓ≠𝑗, we have(i)if either 𝛾𝑛+1<𝑝 or 𝛾𝑗<𝑝 for all π‘—βˆˆ{1,…,𝑛}⧡{𝑗0} for some 𝑗0, then 𝑒0𝑖>0 as 𝑖=1,…,𝑛;(ii)if 𝛾𝑗<𝛾n+1≀𝑝 for all π‘—βˆˆ{1,…,𝑛}⧡{𝑗0} for some 𝑗0, then 𝑒𝑖>0 as 𝑖=1,…,𝑛.The following remark deals also with Application 3.14.Remark 3.19. Making in (3.50) (resp. (3.70)) the change π‘ž1<β‹―<π‘žπ‘šξ€Ί<𝑝resp.π‘ž1<β‹―<π‘žπ‘›+1ξ€»<𝑝,(3.73) system (3.51) (resp. (3.71)) has at least the two weak solutions 𝑒andβˆ’π‘’ ([1], Theorem 4.2; Remark 4.4). The components of 𝑒 keep the properties that Propositions 3.15 and 3.16 (Proposition 3.15 and Proposition 3.18 resp.) underline.

Application 3.20. Let for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝐷𝑑π‘₯,𝑗(𝑣)=π‘žπ‘—βˆ’1ξ€œπœ•Ξ©πœŒπ‘—||𝑑𝑗1||𝑣𝑗||𝛾𝑗+𝑑𝑗2||𝑣𝑛||𝛾𝑗||π‘žπ‘—/π›Ύπ‘—π·π‘‘πœŽas𝑗=1,…,π‘›βˆ’1,π‘›ξ‚΅ξ€œ(𝑣)=πœ•Ξ©||𝑣𝑛||Μ‚π›Ύπ‘›ξ€œπ‘‘πœŽξ‚Άξ‚΅Ξ©πœŒπ‘›||𝑣𝑛||𝛾𝑛,𝑑π‘₯(3.74) where 1<𝛾𝑗<π‘žπ‘—<̂𝑝as𝑗=1,…,π‘›βˆ’1,1<𝛾𝑛<̃𝑝,1<̂𝛾𝑛<̂𝑝,𝑝<π‘ž1<β‹―<π‘žπ‘›βˆ’1<π‘žπ‘›=𝛾𝑛+̂𝛾𝑛,πœŒπ‘—βˆˆπΏβˆž(πœ•Ξ©),πœŒπ‘—<0,𝑑𝑗1,𝑑𝑗2∈𝐿∞(πœ•Ξ©)⧡{0},πœŒπ‘›βˆˆπΏβˆž(Ξ©).(3.75) Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2ξ‚€||inΞ©as𝑖=1,…,π‘›βˆ’1,βˆ’divβˆ‡π‘’π‘›||π‘βˆ’2βˆ‡π‘’π‘›ξ‚=πœ†π‘›π‘π‘›||𝑒𝑛||π‘βˆ’2𝑒𝑛+π›Ύπ‘›ξ‚΅ξ€œπœ•Ξ©||𝑒𝑛||Μ‚π›Ύπ‘›ξ‚ΆπœŒπ‘‘πœŽπ‘›||𝑒𝑛||π›Ύπ‘›βˆ’2𝑒𝑛||inΞ©,βˆ‡π‘’π‘–||π‘βˆ’2πœ•π‘’π‘–πœ•πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+πœŒπ‘–||𝑑𝑖1||𝑒𝑖||𝛾𝑖+𝑑𝑖2||𝑒𝑛||𝛾𝑖||(π‘žπ‘–/𝛾𝑖)βˆ’2×𝑑𝑖1||𝑒𝑖||𝛾𝑖+𝑑𝑖2||𝑒𝑛||𝛾𝑖𝑑𝑖1||𝑒𝑖||π›Ύπ‘–βˆ’2𝑒𝑖||onπœ•Ξ©as𝑖=1,…,π‘›βˆ’1,βˆ‡π‘’π‘›||π‘βˆ’2πœ•π‘’π‘›πœ•πœˆ=πœ‡π‘›Μ‚π‘π‘›||𝑒𝑛||π‘βˆ’2𝑒𝑛+π‘›βˆ’1𝑗=1πœŒπ‘—||𝑑𝑗1||𝑒𝑗||𝛾𝑗+𝑑𝑗2||𝑒𝑛||𝛾𝑗||(π‘žπ‘—/𝛾𝑗)βˆ’2×𝑑𝑗1||𝑒𝑗||𝛾𝑗+𝑑𝑗2||𝑒𝑛||𝛾𝑗𝑑𝑗2||𝑒𝑛||π›Ύπ‘—βˆ’2𝑒𝑛+Μ‚π›Ύπ‘›ξ‚΅ξ€œΞ©πœŒπ‘›||𝑒𝑛||𝛾𝑛||𝑒𝑑π‘₯𝑛||Μ‚π›Ύπ‘›βˆ’2𝑒𝑛onπœ•Ξ©.(3.76) Let us introduce the conditions: 𝜌+𝑛≒0βŸΉπ‘‰+ξ€·π·π‘›ξ€Έξ€Έξ€œβ‰ βˆ…(PropositionsA.1andA.2),(3.77)Ξ©πœŒπ‘›ξ€·π‘‘π‘₯<0βŸΉπ·π‘›ξ€·0,….,0,𝑐𝑛<0βˆ€π‘π‘›βˆˆπ‘…π‘›β§΅ξ€Έπ‘{0},(3.78)ℓ̂𝑏β‰₯0,β„“ξ€œβ‰₯0asβ„“=1,…,π‘›βˆ’1,(3.79)Ξ©π‘π‘›ξ€œπ‘‘π‘₯>0,πœ•Ξ©Μ‚π‘π‘›π‘‘πœŽ>0.(3.80) We have (Propositions 3.2 and 3.4) βŸΉξ€·(3.77)-(3.79)withπœ†β„“,πœ‡β„“β‰€0,πœ†β„“+πœ‡β„“<0π‘Žπ‘ β„“=1,…,π‘›βˆ’1βˆƒπ›Ώβˆ—1𝑖>0∢14ξ€Έ||πœ†holdsif𝑛||,||πœ‡π‘›||β‰€π›Ώβˆ—1ξ€Έ,βŸΉξ€·(3.81)(3.78)-(3.80)withπœ†β„“,πœ‡β„“β‰€0,πœ†β„“+πœ‡β„“<0asβ„“=1,…,π‘›βˆ’1βˆƒπ›Ώβˆ—2𝑖>0∢15ξ€Έholdsifπœ†π‘›,πœ‡π‘›βˆˆξ€Ί0,π›Ώβˆ—2ξ€»andπœ†π‘›+πœ‡π‘›ξ€Έ.>0(3.82)

Proposition 3.21 (see ([1], Theorems 2.2 and 4.2; Remarks 2.3 and 4.4); Proposition A.4; [5, 6]). Under assumption (3.75), we have(i)When (3.77)–(3.79) hold, with πœ†β„“,πœ‡β„“ as in (3.81), system (3.76) has at least two weak solutions 𝑒0 and βˆ’π‘’0(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†πœ†πœ‡βˆ©π‘‰+(𝐷𝑛)), and it results in 𝑒0𝑖β‰₯0(𝑖=1,…,𝑛), 𝑒0𝑛≒0. If 𝛾𝑛<̂𝑝, then𝑒0π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,𝛼0π‘–β„“π‘œπ‘π‘’(Ξ©)(𝑖=1,…,𝑛),0𝑖≒0βŸΉπ‘’0𝑖>0(𝑖=1,…,π‘›βˆ’1);(3.83)(ii)When (3.78)–(3.80) hold, with πœ†β„“,πœ‡β„“ as in (3.82), system (3.76) has at least two weak solutions 𝑒 and βˆ’π‘’(𝑒=πœπ‘£,𝜏=const.>0,π‘£βˆˆπ‘‰βˆ’πœ†πœ‡βˆ©π‘†(𝐷𝑛)), and it results in 𝑒𝑖β‰₯0(𝑖=1,…,𝑛), 𝑒𝑛≒0. If 𝛾𝑛<̂𝑝, thenπ‘’π‘–βˆˆπΏβˆž(Ξ©)∩𝐢1,π›Όπ‘–β„“π‘œπ‘(Ξ©)(𝑖=1,…,𝑛),𝑒𝑖≒0⇒𝑒𝑖>0(𝑖=1,…,π‘›βˆ’1).(3.84) Consequently, when (3.77)–(3.80) hold, with πœ†β„“,πœ‡β„“ as in (3.82), and min{π›Ώβˆ—1,π›Ώβˆ—2} instead of π›Ώβˆ—2 system (3.76) has at least four different weak solutions. Obviously, 𝑒0𝑛>0 and 𝑒𝑛>0 if 𝑝≀𝛾𝑛<̂𝑝.

The following proposition gives a sufficient condition to𝑒0𝑖>0as𝑖=1,…,π‘›βˆ’1,(3.85)𝑒𝑖>0as𝑖=1,…,π‘›βˆ’1.(3.86)

Proposition 3.22. Let 𝛾𝑛<̂𝑝. If 𝛾𝑗<𝑝 and 𝑑𝑗1⋅𝑑𝑗2<0 as 𝑗=1,…,π‘›βˆ’1, then (3.85) and (3.86) hold.

Proof. Since 𝑣1,…,π‘£π‘›ξ€Έβˆˆπ‘‰+ξ€·π·π‘›ξ€ΈβŸΉξ€·||π‘£βˆƒΞ“βŠ†πœ•Ξ©βˆΆπœŽ(Ξ“)>0,𝑛||ξ€Έ>0onΞ“,(3.87) using Propositions A.1 and A.2, we can verify that ξ€·π‘–β„Ž16ξ€Έholdsasβ„Ž=1,…,π‘›βˆ’1with𝔉=π‘†πœ†πœ‡βˆ©π‘‰+𝐷𝑛,(3.88) from which (Remark 1.1) we get (3.85).
Let us prove (3.86). Reasoning by contradiction, let us set, for example, 𝑣1≑0. If 𝑣(𝑠)=((1βˆ’π‘ )1/𝑝𝑣𝑛,𝑣2,…,𝑣𝑛), we have 𝐷𝑛[](𝑣(𝑠))=βˆ’1βˆ€π‘ βˆˆ0,1,βˆƒπ‘ 0∈[[0,1βˆΆπ»πœ†πœ‡ξ€Ίπ‘ (𝑣(𝑠))<0βˆ€π‘ βˆˆ0ξ€»,,1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ 1(𝑣(𝑠))=βˆ’βˆž.(3.89) Then as in Proposition 3.16, we get a contradiction.

Remark 3.23. Making in (3.75) the change: 1<𝛾𝑗<π‘žπ‘—as𝑗=1,…,π‘›βˆ’1,1<𝛾𝑛,1<̂𝛾𝑛,π‘ž1<β‹―<π‘žπ‘›=𝛾𝑛+̂𝛾𝑛<𝑝,(3.90) system (3.76) has at least the two weak solutions 𝑒andβˆ’π‘’ ([1], Theorem 4.2; Remark 4.4). The components of 𝑒, all bounded, are locally HΓΆlderian with their first derivatives. If 𝑑𝑗1⋅𝑑𝑗2<0 as 𝑗=1,…,π‘›βˆ’1, then (3.86) holds.

Application 3.24. Let for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©ξ‚΅||βˆ‡π‘£β„“||𝛾+ξ€œΞ©||𝑣ℓ||𝛾𝑑π‘₯𝑝/𝛾𝐷𝑑π‘₯,𝑗(𝑣)=π‘žπ‘—βˆ’1ξ€œπœ•Ξ©ξƒ©π‘›ξ“β„“=1||𝑣ℓ||𝛾ξƒͺπ‘žπ‘—/π›Ύπ‘‘πœŽas𝑗=1,…,π‘šβˆ’1,π·π‘š(𝑣)=π‘žπ‘šβˆ’1ξ€œΞ©ξƒ©π‘›ξ“β„“=1||𝑣ℓ||𝛾ξƒͺπ‘žπ‘š/𝛾𝑑π‘₯,(3.91) where 1<𝛾<π‘ž1<β‹―<π‘žπ‘š<𝑝.(3.92) Let us consider the system: ||βˆ’divβˆ‡π‘’π‘–||𝛾+ξ€œΞ©||𝑒𝑖||𝛾𝑑π‘₯(𝑝/𝛾)βˆ’1||βˆ‡π‘’π‘–||π›Ύβˆ’2βˆ‡π‘’π‘–ξƒ­=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2π‘’π‘–βˆ’ξƒ©ξ€œΞ©ξ‚΅||βˆ‡π‘’π‘–||𝛾+ξ€œΞ©||𝑒𝑖||𝛾𝑑π‘₯(𝑝/𝛾)βˆ’1ξƒͺ||𝑒𝑑π‘₯𝑖||π›Ύβˆ’2𝑒𝑖+𝑛ℓ=1||𝑒ℓ||𝛾ξƒͺ(π‘žπ‘š/𝛾)βˆ’1||𝑒𝑖||π›Ύβˆ’2𝑒𝑖||inΞ©,βˆ‡π‘’π‘–||𝛾+ξ€œΞ©||𝑒𝑖||𝛾𝑑π‘₯(𝑝/𝛾)βˆ’1||βˆ‡π‘’π‘–||π›Ύβˆ’2πœ•π‘’π‘–πœ•πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖+π‘šβˆ’1𝑗=1𝑛ℓ=1||𝑒ℓ||𝛾ξƒͺ(π‘žπ‘—/𝛾)βˆ’1||𝑒𝑖||π›Ύβˆ’2𝑒𝑖onπœ•Ξ©as𝑖=1,…𝑛.(3.93) We advance the condition: 𝑏ℓ̂𝑏β‰₯0,β„“β‰₯0asβ„“=1,…𝑛,(3.94) and we note that (Proposition 3.1) 𝑖(3.94)βŸΉξ€·ξ€·13ξ€Έholdsifπœ†β„“,πœ‡β„“β‰€0,πœ†β„“+πœ‡β„“ξ€Έ<0asβ„“=1,…,𝑛.(3.95)

Proposition 3.25. Under conditions (3.92) and (3.94), with πœ†β„“,πœ‡β„“ as in (3.95), system (3.93) has at least two weak solutions 𝑒0 and βˆ’π‘’0(𝑒0=𝜏0𝑣0,𝜏0=const.>0,𝑣0βˆˆπ‘†+(𝐷1,…,π·π‘š)), and it results in 𝑒0π‘–βˆˆπΏβˆž(Ξ©),𝑒0𝑖β‰₯0,𝑒0𝑖≒0as𝑖=1,…,𝑛.(3.96)

Proof. We recall that ([1], Section 2), set πœ“(𝑑,𝑣)=π‘π‘‘π‘βˆ’1π»πœ†πœ‡βˆ‘(𝑣)βˆ’π‘šπ‘—=1π‘žπ‘—π‘‘π‘žπ‘—βˆ’1𝐷𝑗(𝑣), we have βˆ€π‘£βˆˆπ‘‰+𝐷1,…,π·π‘šξ€Έβˆƒβˆ£π‘‘(𝑣)>0βˆΆπœ“(𝑑(𝑣),𝑣)=0,thefunctional𝑑(𝑣)is𝐢1in𝑉+𝐷1,…,π·π‘šξ€Έ.(3.97) We introduce the functional 𝐸(𝑣)=(𝑑(𝑣))π‘π»πœ†πœ‡βˆ‘(𝑣)βˆ’π‘šπ‘—=1(𝑑(𝑣))π‘žπ‘—π·π‘—(𝑣) which is 𝐢1 in 𝑉+(𝐷1,…,π·π‘š). We still remember that ([1], Theorem 2.3; Remark 2.5) βˆƒπ‘£0βˆˆπ‘†+𝐷1,…,π·π‘šξ€Έ,with𝑣0𝑖𝐸𝑣β‰₯0as𝑖=1,…,𝑛,suchthat0=inf𝐸(𝑣)βˆΆπ‘£βˆˆπ‘†+𝐷1,…,π·π‘šξ€Έξ‚‡,𝑒0𝑣=𝑑0𝑣0isaweaksolutiontosystem(3.93).(3.98) The property 𝑒0π‘–βˆˆπΏβˆž(Ξ©) is due to Proposition A.4. Let us verify that 𝑒0𝑖≒0 as 𝑖=1,…,𝑛. Reasoning by contradiction, let us set, for example, 𝑣01≑0 and 𝑣02β‰’0. As 𝑣(𝑠)=((1βˆ’π‘ )1/𝛾𝑣02,𝑠1/𝛾𝑣02,𝑣03,…,𝑣0𝑛), we have π‘šξ“π‘—=1𝐷𝑗[],𝑑(𝑣(𝑠))=1βˆ€π‘ βˆˆ0,1π»π‘‘π‘ πœ†πœ‡ξ‚„(𝑣(𝑠))𝑠=1>0.(3.99) Then, since (𝑑/𝑑𝑠)𝐸(𝑣(𝑠))=(𝑑(𝑣(𝑠)))𝑝(𝑑/𝑑𝑠)π»πœ†πœ‡(𝑣(𝑠)),there exists 𝑠0∈[0,1[ such that (𝑑/𝑑𝑠)𝐸(𝑣(𝑠))>0forallπ‘ βˆˆ[𝑠0,1], from which the contradiction: 𝐸𝑣0≀𝐸𝐸𝑣(𝑣(𝑠))<0𝑠,βˆ€π‘ βˆˆ0ξ€Ί.,1(3.100)

Application 3.26. Let for each 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š: 𝐴(𝑣)=π‘π‘›βˆ’1ℓ=1ξ€œΞ©||βˆ‡π‘£β„“||𝑝𝑑π‘₯,𝐷1(𝑣)=π‘ž1βˆ’1ξ€œΞ©πœŒ|||||𝑛ℓ=1𝑑ℓ𝑣ℓ|||||π‘ž1𝐷𝑑π‘₯,2ξƒ©ξ€œ(𝑣)=Ω𝑛ℓ=1𝑑ℓ||𝑣ℓ||π›Ύξƒ­ξ€œπ‘‘π‘₯ξƒͺξƒ©πœ•Ξ©ξƒ¬Μ‚πœŒπ‘›ξ“β„“=1𝑑ℓ||𝑣ℓ||ξƒ­ξƒͺ,Μ‚π›Ύπ‘‘πœŽ(3.101) where 1<𝛾<̃𝑝,1<̂𝛾<̂𝑝,1<π‘ž1ξ€½<miñ𝑝,π‘ž2ξ€Ύ,=𝛾+̂𝛾𝑝<π‘ž2,𝜌,π‘‘β„“βˆˆπΏβˆž(Ξ©)⧡{0},πœŒβ‰€0,πœŒπ‘‘β„“ξ‚π‘‘β‰’0assomeβ„“,β„“βˆˆπΏβˆžξ‚π‘‘(Ξ©)⧡{0},β„“β‰₯0,Μ‚πœŒβˆˆπΏβˆžξπ‘‘(Ξ©)⧡{0},β„“=const.>0.(3.102) Let as β„“=1,…,𝑛𝐹ℓ=𝑓ℓ+𝑓ℓ, where π‘“β„“βˆˆπΏπ‘β€²(Ξ©)(π‘ξ…ž=𝑝/(π‘βˆ’1)) and ξπ‘“β„“βˆˆ(π‘Š1βˆ’(1/𝑝),𝑝(πœ•Ξ©))βˆ— (dual space of π‘Š1βˆ’(1/𝑝),𝑝(πœ•Ξ©)). Let βˆ‘βŸ¨βŸ¨πΉ,π‘£βŸ©βŸ©=𝑛ℓ=1βŸ¨πΉβ„“,π‘£β„“βŸ©forall𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘Š. Let us consider the system: ξ‚€||βˆ’divβˆ‡π‘’π‘–||π‘βˆ’2βˆ‡π‘’π‘–ξ‚=πœ†π‘–π‘π‘–||𝑒𝑖||π‘βˆ’2𝑒𝑖|||||+πœŒπ‘›ξ“β„“=1𝑑ℓ𝑒ℓ|||||π‘ž1βˆ’2𝑛ℓ=1𝑑ℓ𝑒ℓξƒͺπ‘‘π‘–ξƒ©ξ€œ+π›Ύπœ•Ξ©ξƒ¬Μ‚πœŒπ‘›ξ“β„“=1𝑑ℓ||𝑒ℓ||ξƒ­ξƒͺξ‚π‘‘Μ‚π›Ύπ‘‘πœŽπ‘–||𝑒𝑖||π›Ύβˆ’2𝑒𝑖+𝑓𝑖||inΞ©,βˆ‡π‘’π‘–||π‘βˆ’2πœ•π‘’π‘–πœ•πœˆ=πœ‡π‘–Μ‚π‘π‘–||𝑒𝑖||π‘βˆ’2π‘’π‘–ξƒ©ξ€œ+̂𝛾Ω𝑛ℓ=1𝑑ℓ||𝑒ℓ||𝛾ξƒͺ𝑑𝑑π‘₯Μ‚πœŒπ‘–||𝑒𝑖||Μ‚π›Ύβˆ’2𝑒𝑖+𝑓𝑖onπœ•Ξ©as𝑖=1,…,𝑛.(3.103) Let us introduce the conditions: (Μ‚πœŒ)+ξ€·β‰’0βŸΉπ‘‰+𝐷2ξ€Έξ€Έ,ξ€œβ‰ βˆ…(PropositionA.1andA.2)πœ•Ξ©ξ€·Μ‚πœŒπ‘‘πœŽ<0⟹𝐷2(𝑐)<0βˆ€π‘βˆˆπ‘…π‘›β§΅ξ€Έ,{0}(3.104) and let us note that (Proposition 3.3) ξ€·(3.104)βŸΉβˆƒπ›Ώβˆ—ξ€·π‘–>0∢14ξ€Έ||πœ†holdsifβ„“||,||πœ‡β„“||β‰€π›Ώβˆ—ξ€Έasβ„“=1,…,𝑛.(3.105)

Proposition 3.27. Under assumptions (3.102) and (3.104), if 𝐹≒0 and β€–πΉβ€–βˆ— is sufficiently small, then with πœ†β„“,πœ‡β„“ as in (3.105), system (3.103) has at least one weak solution ̃̃̃𝑒(̃𝑒=Μƒπœπ‘£,Μƒπœ=const.>0,π‘£βˆˆπ‘†πœ†πœ‡βˆ©π‘‰+(𝐷2)). When 𝛾<π‘β‰€π‘ž1, it results in Μƒπ‘’β„Žβ‰’0evenifπΉβ„Žβ‰‘0.(3.106)

Proof. The existence of ̃𝑒 is due to ([1], Theorem 3.2). About (3.106), it is sufficiently (Remark 1.1) to verify that ξ€·π‘–β„Ž16ξ€Έholdsasβ„Ž=1,…,𝑛with𝔉=π‘†πœ†πœ‡βˆ©π‘‰+𝐷2ξ€Έ.(3.107) Let 𝑣=(𝑣1,…,𝑣𝑛)βˆˆπ‘‰+(𝐷2)βˆ©π‘†πœ†πœ‡ with, for example, 𝑣1≑0. Let βˆ‘πœ“=β„“β‰ 1𝑑ℓ𝑣ℓ. Let π•‚βŠ†Ξ© be a compact set having positive measure such that 𝑑1>0in𝕂ifπœŒπ‘‘1πœ“β‰‘0,eitherπœŒπ‘‘1πœ“>0in𝕂orπœŒπ‘‘1πœ“<0in𝕂ifπœŒπ‘‘1πœ“β‰’0.(3.108) Proposition A.1 lets us choose πœ‘βˆˆπΆβˆž0(𝑅𝑁) satisfying the following conditions: 𝛿=π‘βˆ’1ξ‚Έξ€œΞ©||||βˆ‡πœ‘π‘π‘‘π‘₯βˆ’πœ†1ξ€œΞ©π‘1||πœ‘||π‘ξ‚Ήξ€œπ‘‘π‘₯>0,Ω𝑑1πœ‘π›Ύπ‘‘π‘₯>0ifπœŒπ‘‘1ξ€œπœ“β‰‘0,Ξ©πœŒπ‘‘1||πœ“||π‘ž1βˆ’2πœ“πœ‘π‘‘π‘₯>0ifπœŒπ‘‘1πœ“β‰’0.(3.109) Then with 𝑣(𝑠)=((1βˆ’π‘ )1/π‘π›Ώβˆ’1/π‘πœ‘,𝑠1/𝑝𝑣2,…,𝑠1/𝑝𝑣𝑛), we have π»πœ†πœ‡[](𝑣(𝑠))=1βˆ€π‘ βˆˆ0,1,𝐷2𝑠(𝑣(𝑠))>0βˆ€π‘ βˆˆ0,1ξ€»ξ€·0≀𝑠0ξ€Έ,<1lim𝑠→1βˆ’π‘‘π·π‘‘π‘ 1(𝑣(𝑠))βˆˆπ‘…,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ 2(𝑣(𝑠))=βˆ’βˆžifπœŒπ‘‘1πœ“β‰‘0,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ 1(𝑣(𝑠))=βˆ’βˆž,lim𝑠→1βˆ’π‘‘π·π‘‘π‘ 2(𝑣(𝑠))βˆˆπ‘…ifπœŒπ‘‘1πœ“β‰’0.(3.110)
Now we replace conditions (3.104) with the following: Μ‚πœŒβ‰₯0,𝑏ℓ̂𝑏β‰₯0,β„“β‰₯0asβ„“=1,…,𝑛.(3.111)

Proposition 3.28. Under assumptions (3.102) and (3.111), if 𝐹≒0 and β€–πΉβ€–βˆ— is sufficiently small, then with πœ†β„“,πœ‡β„“β‰€0 andπœ†β„“+πœ‡β„“<0 as β„“=1,…,𝑛 system (3.103) has at least two different weak solution 𝑒1 and 𝑒2 (𝑒𝑖=πœπ‘–π‘£π‘–,πœπ‘–=const.>0,𝑣1βˆˆπ‘†πœ†πœ‡βˆ©π‘‰+(𝐹),𝑣2βˆˆπ‘†πœ†πœ‡βˆ©π‘‰+(𝐷2)). When 𝛾<π‘β‰€π‘ž1, it results in 𝑒2β„Žβ‰’0evenifπΉβ„Žβ‰‘0.(3.112)

Proof. The existence of 𝑒1 and 𝑒2 is due to ([1], Theorems 3.1, 3.2, and 3.3; Remark 3.1). Relation (3.112) is proved as in Proposition 3.27.

Appendix

In this appendix, we present some results used previously. The first one is trivial. The second one is easy to prove. It is possible to show the third one and the fourth one with the technique developed by Drabek in ([7, Lemma 3.2]). The symbols 𝜎,̂𝑝,and̃𝑝 are the same introduced in Section 3.

Proposition A.1. Let Ξ© be an open set of 𝑅𝑁. Let π•‚βŠ†Ξ© be a compact set with |𝕂|𝑁>0. If Ξ©β€² is an open set such that π•‚βŠ†Ξ©ξ…žβŠ†Ξ©, then there exists a family of functions (πœ‘πœ€)0<πœ€<πœ€0βŠ†πΆβˆž0(Ξ©) such that 0β‰€πœ‘πœ€β‰€1,suppπœ‘πœ€βŠ†Ξ©ξ…ž,πœ‘πœ€βŸΆπœ’stronglyinπΏπ‘ ξ€œ(Ξ©),Ξ©||βˆ‡πœ‘πœ€||𝑠𝑑π‘₯⟢+∞asπœ€βŸΆ0+[[,βˆ€π‘ βˆˆ1,+∞(A.1) where πœ’ is the characteristic function of 𝕂.

Proposition A.2. Let Ξ©βŠ†π‘…π‘ be an open, bounded, connected and 𝐢0,1 set. Let π‘ˆ be an open neighborhood of πœ•Ξ©. If Ξ“ is a subset of πœ•Ξ© with 𝜎(Ξ“)>0, then there exist a compact set ξΞ“βŠ†Ξ“ with 𝜎(Ξ“)>0 and a family of functions (πœ‘πœ€)0<πœ€<πœ€0βŠ†πΆβˆž0(𝑅𝑁) such that 0β‰€πœ‘πœ€β‰€1,suppπœ‘πœ€βŠ†π‘ˆ,πœ‘πœ€βŸΆξπœ’stronglyinπΏπ‘ ξ€œ(πœ•Ξ©),π‘…π‘πœ‘π‘ πœ€π‘‘π‘₯⟢0asπœ€βŸΆ0+[[,βˆ€π‘ βˆˆ1,+∞(A.2) where ξπœ’ is the characteristic function of Γ.

Let Ξ©βŠ†π‘…π‘ be an open, bounded, connected and 𝐢0,1 set. Let as 𝑖=1,…,𝑛𝐴𝑖(π‘₯,πœ‰,πœ‚1,…,πœ‚π‘›) be a CarathΓ¨odory function into 𝑅𝑁 defined for π‘₯∈Ω,for πœ‰βˆˆπ‘…π‘› and for (πœ‚1,…,πœ‚π‘›)∈(𝑅𝑁)𝑛 such that 𝐴𝑖π‘₯,πœ‰,πœ‚1,…,πœ‚π‘›ξ€Έβ‹…πœ‚π‘–β‰₯𝑐0||πœ‚π‘–||𝑝,(A.3) where 1<𝑝<+∞, 𝑐0=const.>0.

Proposition A.3. Let (𝑒1,…,𝑒𝑛)∈(π‘Š01,𝑝(Ξ©))π‘›π‘€π‘–π‘‘β„Žπ‘’π‘–β‰₯0. If there exist π‘Ÿβˆˆ]𝑝,̃𝑝[ and π‘”βˆˆπΏπ‘Ÿ/(π‘Ÿβˆ’π‘)(Ξ©) with 𝑔β‰₯0 such that 𝑛𝑖=1ξ€œΞ©π΄π‘–ξ€·π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έβ‹…βˆ‡π‘£π‘–ξ€œπ‘‘π‘₯≀Ω𝑔𝑛𝑖=1𝑒𝑖ξƒͺπ‘βˆ’1𝑛𝑖=1𝑣𝑖ξƒͺβˆ€ξ€·π‘£π‘‘π‘₯1,…,π‘£π‘›ξ€Έβˆˆξ‚€π‘Š01,𝑝(Ξ©)∩𝐿∞(Ω)𝑛with𝑣𝑖β‰₯0,(A.4) then π‘’π‘–βˆˆπΏβˆž(Ξ©)as𝑖=1,…𝑛.

Proposition A.4. Let (𝑒1,…,𝑒𝑛)∈(π‘Š1,𝑝(Ξ©))𝑛witβ„Žπ‘’π‘–β‰₯0. If there exist π‘Ÿβˆˆ]𝑝,̂𝑝[,π‘”βˆˆπΏπ‘Ÿ/(π‘Ÿβˆ’π‘)(Ξ©) with 𝑔β‰₯0, Μ‚π‘”βˆˆπΏπ‘Ÿ/(π‘Ÿβˆ’π‘)(πœ•Ξ©) with ̂𝑔β‰₯0 such that 𝑛𝑖=1ξ€œΞ©π΄π‘–ξ€·π‘₯,𝑒1,…,𝑒𝑛,βˆ‡π‘’1,…,βˆ‡π‘’π‘›ξ€Έβ‹…βˆ‡π‘£π‘–β‰€ξ€œπ‘‘π‘₯Ω𝑔1+𝑛𝑖=1𝑒𝑖ξƒͺπ‘βˆ’1𝑛𝑖=1𝑣𝑖ξƒͺξ€œπ‘‘π‘₯+πœ•Ξ©ξƒ©Μ‚π‘”1+𝑛𝑖=1𝑒𝑖ξƒͺπ‘βˆ’1𝑛𝑖=1𝑣𝑖ξƒͺβˆ€ξ€·π‘£π‘‘πœŽ1,…,π‘£π‘›ξ€Έβˆˆξ€·π‘Š1,𝑝(Ξ©)βˆ©πΏβˆžξ€Έ(Ξ©)𝑛with𝑣𝑖β‰₯0,(A.5) then π‘’π‘–βˆˆπΏβˆž(Ξ©)as𝑖=1,…,𝑛.

Remark A.5. If ̂𝑔≑0, we can suppose π‘Ÿβˆˆ]𝑝,̃𝑝[.

Acknowledgment

This paper is supported by the Second University of Naples.