About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 796104, 19 pages
http://dx.doi.org/10.1155/2012/796104
Research Article

th Moment Exponential Stability of Stochastic PWM Feedback Systems with Time-Varying Delays

College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China

Received 22 September 2012; Accepted 12 November 2012

Academic Editor: Chuandong Li

Copyright © 2012 Zhong Zhang and Lixia Ye. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Takahashi, “A new control of PWM inverter wave form for minimum loss operation of an induction motor drive,” IEEE Transactions on Industry Applications, vol. 21, no. 4, pp. 580–587, 1985. View at Publisher · View at Google Scholar
  2. S.-Y. Choe, J.-G. Lee, J.-W. Ahn, and S.-H. Baek, “Integrated modeling and control of a PEM fuel cell power system with a PWM DC/DC converter,” Journal of Power Sources, vol. 164, no. 2, pp. 614–623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-C. Bor and C.-Y. Wu, “Realization of the CMOS pulsewidth-modulation (PWM) neural network with on-chip learning,” IEEE Transactions on Circuits and Systems II, vol. 45, no. 1, pp. 96–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Hui and B. Michael, “A new partly unsymmetrical PWM technique for harmopnic compensators,” in Proceedings of the 11th European Conference on Power Electronics and Applications (EPE '05), Dresdnen, Germany, September 2005. View at Publisher · View at Google Scholar
  5. N. Bodo, M. Jones, and E. Levi, “A PWM method for seven- and nine-phase open-end winding motor drives,” Mathematics and Computers in Simulation. In press. View at Publisher · View at Google Scholar
  6. G. J. Murphy and S. H. Wu, “A stability criterion for pulse-width-modulated feedback control systems,” IEEE Transactions on Automatic Control, vol. 9, pp. 434–441, 1964. View at Publisher · View at Google Scholar
  7. A. Balestrino, A. Eisinberg, and L. Sciavicco, “A generalised approach to the stability analysis of PWM feedback control systems,” Journal of the Franklin Institute, vol. 298, no. 1, pp. 45–58, 1974. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  8. R. A. Skoog, “On the stability of pulse width modulated feedback systems,” IEEE Transactions on Automatic Control, vol. 13, no. 5, pp. 532–538, 1968. View at Publisher · View at Google Scholar
  9. A. Halanay, “Positive definite kernels and stability of automatic systems,” Revue Roumaine de Mathématique Pures et Appliquées, vol. 9, no. 8, pp. 751–765, 1964 (Russian).
  10. V. M. Popov, “On absolute stability of nonlinear systems of automatic regulation,” Avtomatika i Telemekhanika, vol. 22, no. 8, pp. 961–979, 1961.
  11. S. C. Gupta and E. I. Jury, “Statistical study of pulse-width modulated control systems,” Journal of the Franklin Institute, vol. 273, no. 4, pp. 292–321, 1962. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Hou and A. N. Michel, “Moment stability of pulse-width-modulated feedback systems subjected to random disturbances,” in Proceedings of the 39th IEEE Confernce on Decision and Control, pp. 2343–2348, Sydney, Australia, December 2000. View at Scopus
  13. L. Hou and A. N. Michel, “Moment stability of discontinuous stochastic dynamical systems,” in Proceedings of the Americal Control Conference, vol. 6, pp. 3807–3811, Chicago, Ill, USA, June 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Boyd, L. EI Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1994.
  15. P. Cheng, F. Deng, and Y. Peng, “Robust exponential stability and delayed-state-feedback stabilization of uncertain impulsive stochastic systems with time-varying delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 4740–4752, 2012. View at Publisher · View at Google Scholar
  16. W. Su and Y. Chen, “Global robust exponential stability analysis for stochastic interval neural networks with time-varying delays,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 5, pp. 2293–2300, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  17. Y. Sun and J. Cao, “pth moment exponential stability of stochastic recurrent neural networks with time-varying delays,” Nonlinear Analysis: Real World Applications, vol. 8, no. 4, pp. 1171–1185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Li, T. Huang, G. Feng, and G. Chen, “Exponential stability of time-controlled switching systems with time delay,” Journal of the Franklin Institute, vol. 349, no. 1, pp. 216–233, 2012. View at Publisher · View at Google Scholar
  19. H. Huang and G. Feng, “Delay-dependent stability for uncertain stochastic neural networks with time-varying delay,” Physica A, vol. 381, no. 1-2, pp. 93–103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Li, C. Li, X. Liao, and T. Huang, “Impulsive effects on stability of high-order BAM neural networks with time delays,” Neurocomputing, vol. 74, no. 10, pp. 1541–1550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Tian, S. Zhong, and Y. Wang, “Improved exponential stability criteria for neural networks with time-varying delays,” Neurocomputing, vol. 97, no. 15, pp. 164–173, 2012. View at Publisher · View at Google Scholar
  22. Z. Wu, H. Su, J. Chu, and W. Zhou, “New results on robust exponential stability for discrete recurrent neural networks with time-varying delays,” Neurocomputing, vol. 72, no. 13–15, pp. 3337–3342, 2009. View at Publisher · View at Google Scholar · View at Scopus