About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 854140, 14 pages
http://dx.doi.org/10.1155/2012/854140
Research Article

Energy Reduction with Anticontrol of Chaos for Nonholonomic Mobile Robot System

1Department of Electrical Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
2Department of Mechatronics Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 19697, Iran

Received 18 June 2012; Accepted 7 September 2012

Academic Editor: Jinhu Lü

Copyright © 2012 Zahra Yaghoubi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ye, “Tracking control for nonholonomic mobile robots: integrating the analog neural network into the backstepping technique,” Neurocomputing, vol. 71, no. 16–18, pp. 3373–3378, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. M. Bloch, J. Baillieul, P. Crouch, and J. E. Marsden, Nonholonomic Mechanics and Control, Springer, Berlin, Germany, 2003.
  3. C. Samson and K. Ait-Abderrahim, “Feedback control of a nonholonomic wheeled cart in Cartesian space,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1136–1141, Sacramento, Calif, USA, April 1991. View at Scopus
  4. A. De Luca and M. D. Di Benedetto, “control of nonholonomic systems via Dynamic Compensation,” Kybernetica, vol. 29, no. 6, pp. 593–608, 1993. View at Zentralblatt MATH
  5. B. d'Andrea-Novel, G. Campion, and G. Bastin, “Control of nonholonomic wheeled mobile robots by state feedback linearization,” International Journal of Robotics Research, vol. 14, no. 6, pp. 543–559, 1995. View at Scopus
  6. J. M. Yang and J. H. Kim, “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 15, no. 3, pp. 578–587, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Bloch and S. Drakunov, “Tracking in nonholonomic dynamic systems via sliding modes,” in Proceedings of the 34th IEEE Conference on Decision and Control (CDC '95), pp. 2103–2106, New Orleans, La, USA, December 1995. View at Scopus
  8. T. C. Lee, K. T. Song, C. H. Lee, and C. C. Teng, “Tracking control of unicycle-modeled mobile robots using a saturation feedback controller,” IEEE Transactions on Control Systems Technology, vol. 9, no. 2, pp. 305–318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. T. C. Lee, K. T. Song, C. H. Lee, and C. C. Teng, “Tracking control of mobile robots using saturation feedback controller,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '99), pp. 2639–2644, May 1999. View at Scopus
  10. Z. P. Jiang and H. Nijmeijer, “Tracking control of mobile robots: a case study in backstepping,” Automatica, vol. 33, no. 7, pp. 1393–1399, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. G. Indiveri, “Kinematic time-invariant control of a 2D nonholonomic vehicle,” in Proceedings of the 38th IEEE Conference on Decision and Control (CDC '99), pp. 2112–2117, December 1999. View at Scopus
  12. B. Ma and W. Huo, “Adaptive control of space robot system with an attitude controlled base,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1265–1270, Nagoya, Japan, May 1995. View at Scopus
  13. T. Fukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of a nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5, pp. 609–615, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Imen, M. Mansouri, and M. A. Shoorehdeli, “Tracking control of mobile robot using ANFIS,” in Proceedings of the IEEE International Conference on Mechatronics and Automation, vol. 978, pp. 4244–8115, Beijing, China, August 2011.
  15. J. Zhou, J. A. Lu, and J. Lü, “Pinning adaptive synchronization of a general complex dynamical network,” Automatica, vol. 44, no. 4, pp. 996–1003, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Lü and G. Chen, “A time-varying complex dynamical network model and its controlled synchronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Lü, X. Yu, G. Chen, and D. Cheng, “Characterizing the synchronizability of small-world dynamical networks,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 4, pp. 787–796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Chen and X. Dong, From Chaos to Order: Perspectives, Methodologies and Applications, World Scientific, Singapore, Singapore, 1988.
  19. G. Klančar, D. Matko, and S. Blai, “A control strategy for platoons of differential drive wheeled mobile robot,” Robotics and Autonomous Systems, vol. 59, no. 2, pp. 57–64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. K. Chen, “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping,” Journal of Sound and Vibration, vol. 255, no. 4, pp. 719–740, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH