About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2012 (2012), Article ID 913809, 11 pages
http://dx.doi.org/10.1155/2012/913809
Research Article

Existence of Solutions for Nonlinear Mixed Type Integrodifferential Functional Evolution Equations with Nonlocal Conditions

Department of Mathematics and Physics, Anhui University of Architecture, Anhui, Hefei 230022, China

Received 29 June 2012; Revised 14 August 2012; Accepted 1 September 2012

Academic Editor: Beata Rzepka

Copyright © 2012 Shengli Xie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Ravi Kumar, “Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in Banach spaces,” Applied Mathematics and Computation, vol. 204, no. 1, pp. 352–362, 2008. View at Publisher · View at Google Scholar
  2. B. Radhakrishnan and K. Balachandran, “Controllability results for semilinear impulsive integrodifferential evolution systems with nonlocal conditions,” Journal of Control Theory and Applications, vol. 10, no. 1, pp. 28–34, 2012. View at Publisher · View at Google Scholar
  3. J. Wang and W. Wei, “A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces,” Results in Mathematics, vol. 58, no. 3-4, pp. 379–397, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  4. M. B. Dhakne and K. D. Kucche, “Existence of a mild solution of mixed Volterra-Fredholm functional integrodifferential equation with nonlocal condition,” Applied Mathematical Sciences, vol. 5, no. 5–8, pp. 359–366, 2011.
  5. N. Abada, M. Benchohra, and H. Hammouche, “Existence results for semilinear differential evolution equations with impulses and delay,” CUBO. A Mathematical Journal, vol. 12, no. 2, pp. 1–17, 2010. View at Zentralblatt MATH
  6. X. Xu, “Existence for delay integrodifferential equations of Sobolev type with nonlocal conditions,” International Journal of Nonlinear Science, vol. 12, no. 3, pp. 263–269, 2011.
  7. Y. Yang and J. Wang, “On some existence results of mild solutions for nonlocal integrodifferential Cauchy problems in Banach spaces,” Opuscula Mathematica, vol. 31, no. 3, pp. 443–455, 2011. View at Zentralblatt MATH
  8. Q. Liu and R. Yuan, “Existence of mild solutions for semilinear evolution equations with non-local initial conditions,” Nonlinear Analysis, vol. 71, no. 9, pp. 4177–4184, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  9. A. Boucherif and R. Precup, “Semilinear evolution equations with nonlocal initial conditions,” Dynamic Systems and Applications, vol. 16, no. 3, pp. 507–516, 2007.
  10. D. N. Chalishajar, “Controllability of mixed Volterra-Fredholm-type integro-differential systems in Banach space,” Journal of the Franklin Institute, vol. 344, no. 1, pp. 12–21, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  11. J. H. Liu and K. Ezzinbi, “Non-autonomous integrodifferential equations with non-local conditions,” Journal of Integral Equations and Applications, vol. 15, no. 1, pp. 79–93, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  12. K. Balachandran and R. Sakthivel, “Controllability of semilinear functional integrodifferential systems in Banach spaces,” Kybernetika, vol. 36, no. 4, pp. 465–476, 2000.
  13. Y. P. Lin and J. H. Liu, “Semilinear integrodifferential equations with nonlocal Cauchy problem,” Nonlinear Analysis, vol. 26, no. 5, pp. 1023–1033, 1996. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  14. K. Malar, “Existence of mild solutions for nonlocal integro-di erential equations with measure of noncompactness,” Internationnal Journal of Mathematics and Scientic Computing, vol. 1, pp. 86–91, 2011.
  15. H.-B. Shi, W.-T. Li, and H.-R. Sun, “Existence of mild solutions for abstract mixed type semilinear evolution equations,” Turkish Journal of Mathematics, vol. 35, no. 3, pp. 457–472, 2011. View at Zentralblatt MATH
  16. T. Zhu, C. Song, and G. Li, “Existence of mild solutions for abstract semilinear evolution equations in Banach spaces,” Nonlinear Analysis, vol. 75, no. 1, pp. 177–181, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  17. Z. Fan, Q. Dong, and G. Li, “Semilinear differential equations with nonlocal conditions in Banach spaces,” International Journal of Nonlinear Science, vol. 2, no. 3, pp. 131–139, 2006.
  18. X. Xue, “Existence of solutions for semilinear nonlocal Cauchy problems in Banach spaces,” Electronic Journal of Differential Equations, vol. 64, pp. 1–7, 2005. View at Zentralblatt MATH
  19. S. K. Ntouyas and P. Ch. Tsamatos, “Global existence for semilinear evolution equations with nonlocal conditions,” Journal of Mathematical Analysis and Applications, vol. 210, no. 2, pp. 679–687, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  20. L. Byszewski and H. Akca, “Existence of solutions of a semilinear functional-differential evolution nonlocal problem,” Nonlinear Analysis, vol. 34, no. 1, pp. 65–72, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  21. H.-P. Heinz, “On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions,” Nonlinear Analysis, vol. 7, no. 12, pp. 1351–1371, 1983. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  22. D. Guo, V. Lakshmikantham, and X. Liu, Nonlinear Integral Equations in Abstract Spaces, vol. 373 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, The Netherlands, 1996.
  23. H. Mönch, “Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces,” Nonlinear Analysis, vol. 4, no. 5, pp. 985–999, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  24. R. Ye, Q. Dong, and G. Li, “Existence of solutions for double perturbed neutral functional evolution equation,” International Journal of Nonlinear Science, vol. 8, no. 3, pp. 360–367, 2009. View at Zentralblatt MATH
  25. A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, NY, USA, 1969.