Table 1: The Brown-Robinson method for solving the example.

𝑘 𝑖 ( 𝑘 ) 𝑗 ( 𝑘 ) M i n 𝜆 ( 𝑈 𝑘 ) / 𝑘 M a x 𝜆 ( 𝑉 𝑘 ) / 𝑘

1 1 1 ( . 4 5 0 𝑒 1 , . 1 ) 𝑇 ( . 1 2 3 0 , . 2 3 0 0 ) 𝑇
2 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 5 0 0 0 0 0 0 0 0 0 𝑒 1 ) 𝑇 ( . 8 4 0 0 0 0 0 0 0 0 𝑒 1 , . 1 1 5 0 0 0 0 0 0 0 ) 𝑇
3 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 3 3 3 3 3 3 3 3 3 3 𝑒 1 ) 𝑇 ( . 7 0 9 9 9 9 9 9 9 9 𝑒 1 , . 7 6 6 6 6 6 6 6 6 6 𝑒 1 ) 𝑇
4 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 2 5 0 0 0 0 0 0 0 0 𝑒 1 ) 𝑇 ( . 6 4 5 0 0 0 0 0 0 0 𝑒 1 , . 5 7 5 0 0 0 0 0 0 0 𝑒 1 ) 𝑇
5 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 2 0 0 0 0 0 0 0 0 0 𝑒 1 ) 𝑇 ( . 6 0 6 0 0 0 0 0 0 0 𝑒 1 , . 4 6 0 0 0 0 0 0 0 0 𝑒 1 ) 𝑇
6 1 3 ( . 4 5 0 0 0 0 0 0 0 1 𝑒 1 , . 1 6 6 6 6 6 6 6 6 7 𝑒 1 ) 𝑇 ( . 5 8 0 0 0 0 0 0 0 1 𝑒 1 , . 3 8 3 3 3 3 3 3 3 4 𝑒 1 ) 𝑇
7 1 3 ( . 4 5 0 0 0 0 0 0 0 1 𝑒 1 , . 1 4 2 8 5 7 1 4 2 9 𝑒 1 ) 𝑇 ( . 5 6 1 4 2 8 5 7 1 6 𝑒 1 , . 3 2 8 5 7 1 4 2 8 7 𝑒 1 ) 𝑇
8 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 2 5 0 0 0 0 0 0 0 𝑒 1 ) 𝑇 ( . 5 4 7 5 0 0 0 0 0 0 𝑒 1 , . 2 8 7 5 0 0 0 0 0 0 𝑒 1 ) 𝑇
9 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 1 1 1 1 1 1 1 1 1 𝑒 1 ) 𝑇 ( . 5 3 6 6 6 6 6 6 6 6 𝑒 1 , . 2 5 5 5 5 5 5 5 5 5 𝑒 1 ) 𝑇
1 0 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 0 0 0 0 0 0 0 0 0 𝑒 1 ) 𝑇 ( . 5 2 8 0 0 0 0 0 0 0 𝑒 1 , . 2 3 0 0 0 0 0 0 0 0 𝑒 1 ) 𝑇
1 0 2 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 0 0 0 0 0 0 0 0 0 𝑒 2 ) 𝑇 ( . 4 5 7 8 0 0 0 0 0 0 𝑒 1 , . 2 3 0 0 0 0 0 0 0 0 𝑒 2 ) 𝑇
1 0 3 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 0 0 0 0 0 0 0 0 0 𝑒 3 ) 𝑇 ( . 4 5 0 7 8 0 0 0 0 0 𝑒 1 , . 2 3 0 0 0 0 0 0 0 0 𝑒 3 ) 𝑇
1 0 4 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 0 0 0 0 0 0 0 0 0 𝑒 4 ) 𝑇 ( . 4 5 0 0 7 8 0 0 0 0 𝑒 1 , . 2 3 0 0 0 0 0 0 0 0 𝑒 4 ) 𝑇
1 0 5 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 0 0 0 0 0 0 0 0 0 𝑒 5 ) 𝑇 ( . 4 5 0 0 0 7 8 0 0 0 𝑒 1 , . 2 3 0 0 0 0 0 0 0 0 𝑒 5 ) 𝑇
1 0 6 1 3 ( . 4 5 0 0 0 0 0 0 0 0 𝑒 1 , . 1 0 0 0 0 0 0 0 0 0 𝑒 6 ) 𝑇 ( . 4 5 0 0 0 0 7 8 0 0 𝑒 1 , . 2 3 0 0 0 0 0 0 0 0 𝑒 6 ) 𝑇