About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 151520, 8 pages
http://dx.doi.org/10.1155/2013/151520
Research Article

Land Use Patch Generalization Based on Semantic Priority

1Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
2Liaoning Key Laboratory of Physical Geography and Geomatics, Dalian 116029, China

Received 31 January 2013; Accepted 25 March 2013

Academic Editor: Jianhong (Cecilia) Xia

Copyright © 2013 Jun Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Zongbo, “On mapping integration and compiling technique of image maps,” Scientia Geographica Sinica, vol. 8, no. 1, pp. 87–93, 1988. View at Scopus
  2. R. Chithambaram, K. Beard, and R. Barrera, “Skeletonizing polygons for map generalization,” Technical Papers ACSM. Baltimore, vol. 2, pp. 44–55, 1991. View at Scopus
  3. T. Ai and H. Wu, “Consistency correction of shared boundary between adjacent polygons,” Geomatics and Information Science of Wuhan University, no. 5, pp. 426–442, 2000.
  4. T. H. Ai, R. Z. Guo, and X. D. Chen, “Simplification and aggregation of polygon object supported by delaunay triangulation structure,” Journal of Image and Graphics, no. 7, pp. 93–99, 2001.
  5. L. Harrie, “Weight-setting and quality assessment in simultaneous graphic generalization,” The Cartographic Journal, vol. 40, no. 3, pp. 221–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Kulik, M. Duckham, and M. Egenhofer, “Ontology-driven map generalization,” Journal of Visual Languages & Computing, vol. 16, no. 3, pp. 245–267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Zhao, J. Chen, D. Wang, Y. Shang, and T. Ai, “The design and implementation of geo-spatial database updating system based on digital map generalization,” in 2nd International Conference on Space Information Technology, Proceedings of SPIE, Huazhong University of Science and Technology; The Second Academy of China Aerospace Science and Industry Corporation; The National Natural Science Foundation of China; Chinese Academy of Space Technology; China Aerospace Science and Industry Corporation, Wuhan, China, November 2007.
  8. J. Li, D. Zhu, X. Song, Y. Chen, and Y. Yang, “A Polygon simplification algorithm with area-balance consideration,” Geography and Geo-Information Science, no. 1, pp. 103–106, 2009.
  9. W. Huang, W. Dai, and S. Yu, “Using modified Douglas-Peucher algorithm based on area preservation to simplify polygons,” Science Technology and Engineering, no. 24, pp. 7325–7328, 2009.
  10. J. Stoter, D. Burghardt, C. Duchêne et al., “Methodology for evaluating automated map generalization in commercial software,” Computers, Environment and Urban Systems, vol. 33, no. 5, pp. 311–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Qiao and T. Zhang, “Automated map generalization in distributed environments,” in Proceedings of International Joint Conference on Computational Sciences and Optimization (CSO '09), pp. 181–183, IEEE Computer Society, Hainan, China, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Dilo, P. van Oosterom, and A. Hofman, “Constrained tGAP for generalization between scales: the case of Dutch topographic data,” Computers, Environment and Urban Systems, vol. 33, no. 5, pp. 388–402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. V. Stanislawski, “Feature pruning by upstream drainage area to support automated generalization of the United States National Hydrography Dataset,” Computers, Environment and Urban Systems, vol. 33, no. 5, pp. 325–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Foerster, L. Lehto, T. Sarjakoski, L. T. Sarjakoski, and J. Stoter, “Map generalization and schema transformation of geospatial data combined in a Web Service context,” Computers, Environment and Urban Systems, vol. 34, no. 1, pp. 79–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Ai, F. Yang, and J. Li, “Land-use data generalization for the database construction of the second land resource survey,” Geomatics and Information Science of Wuhan University, vol. 35, no. 8, pp. 887–891, 2010. View at Scopus
  16. Y. Liu, H. Li, and C. Yang, “Ontology based land use data generalization,” Geomatics and Information Science of Wuhan University, vol. 35, no. 8, pp. 883–886, 2010. View at Scopus
  17. Y. Zhu, S. Zhou, and T. Lu, “Rearch on spatial data line generalization algorithm in map generalization,” Journal of Software, vol. 6, no. 2, pp. 241–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Ai and Y. Liu, “Aggregation and amalgamation in land-use data generalization,” Geomatics and Information Science of Wuhan University, vol. 27, no. 5, p. 486, 2002. View at Scopus
  19. J. Weng, Q. Guo, X. Wang, and P. Liu, “An improved algorithm for combination of land-use data,” Geomatics and Information Science of Wunan University, no. 9, pp. 1116–1118, 2012.
  20. X. Liu, S. Li, and W. Huang, “Study of Douglas-Peucker algorithm controlling by the goniometry in generalization,” Geomatics & Spatial Information Technology, vol. 29, no. 1, pp. 59–60, 2006.
  21. Q. Guo, “Study on progressive approach to graphic generalization of linear feature,” Geomatics and Information Science of Wuhan University, no. 1, pp. 54–58, 1998.
  22. H. Z. Qian, F. Wu, B. Chen, J. H. Zhang, and J. Y. Wang, “Simplifying line with oblique dividing curve method,” Acta Geodaetica et Cartographica Sinica, vol. 36, no. 4, pp. 443–456, 2007. View at Scopus