About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 176730, 10 pages
http://dx.doi.org/10.1155/2013/176730
Research Article

Approximate Solutions of Fisher's Type Equations with Variable Coefficients

1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt

Received 6 September 2013; Accepted 20 September 2013

Academic Editor: Dumitru Baleanu

Copyright © 2013 A. H. Bhrawy and M. A. Alghamdi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Springer, Berlin, Germany, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  2. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer, Berlin, Germany, 2006. View at MathSciNet
  3. C. I. Gheorghiu, Spectral Methods for Differential Problems, T. Popoviciu Institute of Numerical Analysis,, Cluj-Napoca, Romaina, 2007.
  4. E. H. Doha, W. M. Abd-Elhameed, and A. H. Bhrawy, “New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials,” Collectanea Mathematica, vol. 64, no. 3, pp. 373–394, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  5. E. H. Doha and A. H. Bhrawy, “An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method,” Computers & Mathematics with Applications, vol. 64, no. 4, pp. 558–571, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  6. E. H. Doha, A. H. Bhrawy, D. Baleanu, and S. S. Ezz-Eldien, “On shifted Jacobi spectral approximations for solving fractional differential equations,” Applied Mathematics and Computation, vol. 219, no. 15, pp. 8042–8056, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  7. O. R. Isik and M. Sezer, “Bernstein series solution of a class of Lane-Emden type equations,” Mathematical Problems in Engineering, Article ID 423797, 9 pages, 2013. View at MathSciNet
  8. E. Tohidi, A. H. Bhrawy, and K. Erfani, “A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation,” Applied Mathematical Modelling, vol. 37, no. 6, pp. 4283–4294, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  9. M. S. Mechee and N. Senu, “Numerical study of fractional differential equations of Lane-Emden type by method of collocation,” Applied Mathematics, vol. 3, pp. 851–856, 2012.
  10. A. H. Bhrawy and W. M. Abd-Elhameed, “New algorithm for the numerical solutions of nonlinear third-order differential equations using Jacobi-Gauss collocation method,” Mathematical Problems in Engineering, vol. 2011, Article ID 837218, 14 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  11. A. Ahmadian, M. Suleiman, S. Salahshour, and D. Baleanu, “A Jacobi operational matrix for solving a fuzzy linear fractional differential equation,” Advances in Difference Equations, vol. 2013, article 104, 29 pages, 2013.
  12. D. Baleanu, A. H. Bhrawy, and T. M. Taha, “Two efficient generalized Laguerre spectral algorithms for fractional initial value problems,” Abstract and Applied Analysis, vol. 2013, Article ID 546502, 10 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  13. D. Baleanu, A. H. Bhrawy, and T. M. Taha, “A modified Generalized Laguerre spectral method for fractional differential equations on the half line,” Abstract and Applied Analysis, vol. 2013, Article ID 413529, 12 pages, 2013. View at Publisher · View at Google Scholar
  14. A. Ahmadian, M. Suleiman, and S. Salahshour, “An operational matrix based on Legendre polynomials for solving fuzzy fractional-order differential equations,” Abstract and Applied Analysis, vol. 2013, Article ID 505903, 29 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  15. F. Ghaemi, R. Yunus, A. Ahmadian, S. Salahshourd, M. Suleiman, and S. F. Saleh, “Application of fuzzy fractional kinetic equations to modelling of the acid hydrolysis reaction,” Abstract and Applied Analysis, vol. 2013, Article ID 610314, 19 pages, 2013. View at Publisher · View at Google Scholar
  16. M. H. Atabakzadeh, M. H. Akrami, and G. H. Erjaee, “Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations,” Applied Mathematical Modelling, vol. 37, no. 20-21, pp. 8903–8911, 2013.
  17. A. H. Bhrawy and M. M. Al-Shomrani, “A shifted Legendre spectral method for fractional-order multi-point boundary value problems,” Advances in Difference Equations, vol. 2012, article 8, 19 pages, 2012. View at Publisher · View at Google Scholar
  18. X. Ma and C. Huang, “Spectral collocation method for linear fractional integro-differential equations,” Applied Mathematical Modelling, 2013. View at Publisher · View at Google Scholar
  19. M. R. Eslahchi, M. Dehghan, and M. Parvizi, “Application of the collocation method for solving nonlinear fractional integro-differential equations,” Journal of Computational and Applied Mathematics, vol. 257, pp. 105–128, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  20. Y. Yangy and Y. Huang, “Spectral-collocation methods for fractional pantograph delay-integrodifferential equations,” Advances in Mathematical Physics. In press.
  21. A. H. Bhrawy and A. S. Alofi, “The operational matrix of fractional integration for shifted Chebyshev polynomials,” Applied Mathematics Letters, vol. 26, no. 1, pp. 25–31, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  22. R. A. Fisher, “The wave of advance of advantageous genes,” Annals of Eugenics, vol. 7, pp. 335–369, 1937.
  23. A. J. Khattak, “A computational meshless method for the generalized Burger's-Huxley equation,” Applied Mathematical Modelling, vol. 33, no. 9, pp. 3718–3729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. F. Britton, Reactiondiffusion Equations and Their Applications to Biology, Academic Press, London, UK, 1986. View at MathSciNet
  25. D. A. Frank, Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, Princeton, NJ, USA, 1955.
  26. A. Wazwaz, “The extended tanh method for abundant solitary wave solutions of nonlinear wave equations,” Applied Mathematics and Computation, vol. 187, no. 2, pp. 1131–1142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Malfliet, “Solitary wave solutions of nonlinear wave equations,” American Journal of Physics, vol. 60, no. 7, pp. 650–654, 1992. View at Publisher · View at Google Scholar · View at MathSciNet
  28. Y. Tan, H. Xu, and S.-J. Liao, “Explicit series solution of travelling waves with a front of Fisher equation,” Chaos, Solitons and Fractals, vol. 31, no. 2, pp. 462–472, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  29. H. N. A. Ismail, K. Raslan, and A. A. A. Rabboh, “Adomian decomposition method for Burger's-Huxley and Burger's-Fisher equations,” Applied Mathematics and Computation, vol. 159, no. 1, pp. 291–301, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  30. J. Canosa, “Diffusion in nonlinear multiplicative media,” Journal of Mathematical Physics, vol. 10, no. 10, pp. 1862–1868, 1969. View at Scopus
  31. A. Öǧün and C. Kart, “Exact solutions of Fisher and generalized Fisher equations with variable coefficients,” Acta Mathematicae Applicatae Sinica, vol. 23, no. 4, pp. 563–568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. D. Gunzburger, L. S. Hou, and W. Zhu, “Fully discrete finite element approximations of the forced Fisher equation,” Journal of Mathematical Analysis and Applications, vol. 313, no. 2, pp. 419–440, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Dag, A. Şahin, and A. Korkmaz, “Numerical investigation of the solution of Fisher's equation via the B-spline galerkin method,” Numerical Methods for Partial Differential Equations, vol. 26, no. 6, pp. 1483–1503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Bastani and D. K. Salkuyeh, “A highly accurate method to solve Fisher's equation,” Pramana, vol. 78, no. 3, pp. 335–346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. R. C. Mittal and R. K. Jain, “Numerical solutions of nonlinear Fisher's reaction-diffusion equation with modified cubic B-spline collocation method,” Mathematical Sciences, vol. 7, article 12, 2013.
  36. J. Gazdag and J. Canosa, “Numerical solution of Fisher's equation,” Journal of Applied Probability, vol. 11, pp. 445–457, 1974. View at MathSciNet
  37. T. Zhao, C. Li, Z. Zang, and Y. Wu, “Chebyshev-Legendre pseudo-spectral method for the generalised Burgers-Fisher equation,” Applied Mathematical Modelling, vol. 36, no. 3, pp. 1046–1056, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Gürarslan, “Numerical modelling of linear and nonlinear diffusion equations by compact finite difference method,” Applied Mathematics and Computation, vol. 216, no. 8, pp. 2472–2478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Y. Chen, Numerical methods for the Burgers-Fisher equation [M.S. thesis], University of Aeronautics and Astronautics, Nanjing, China, 2007.
  40. R. E. Mickens and A. B. Gumel, “Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equation,” Journal of Sound and Vibration, vol. 257, no. 4, pp. 791–797, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. R. E. Mickens, “A best finite-difference scheme for the Fisher equation,” Numerical Methods for Partial Differential Equations, vol. 10, no. 5, pp. 581–585, 1994. View at Publisher · View at Google Scholar · View at MathSciNet
  42. R. E. Mickens, “Relation between the time and space step-sizes in nonstandard finite-difference schemes for the Fisher equation,” Numerical Methods for Partial Differential Equations, vol. 15, no. 1, pp. 51–55, 1997. View at MathSciNet
  43. N. Parekh and S. Puri, “A new numerical scheme for the Fisher equation,” Journal of Physics A, vol. 23, no. 21, pp. L1085–L1091, 1990. View at MathSciNet
  44. R. Rizwan-Uddin, “Comparison of the nodal integral method and nonstandard finite-difference schemes for the Fisher equation,” SIAM Journal on Scientific Computing, vol. 22, no. 6, pp. 1926–1942, 2001. View at Scopus
  45. R. Chernma, “Exact and numerical solutions of tiie generalized fisher equation,” Reports on Mathematkxl Physics, vol. 47, pp. 393–411, 2001.
  46. A. Şahin, I. Dag, and B. Saka, “A B-spline algorithm for the numerical solution of Fisher's equation,” Kybernetes, vol. 37, no. 2, pp. 326–342, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  47. J. Roessler and H. Hüssner, “Numerical solution of the 1+2 dimensional Fisher's equation by finite elements and the Galerkin method,” Mathematical and Computer Modelling, vol. 25, no. 3, pp. 57–67, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Roessler and H. Hüssner, “Numerical solution of the 1+2 dimensional Fisher's equation by finite elements and the Galerkin method,” Mathematical and Computer Modelling, vol. 25, no. 3, pp. 57–67, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. E. H. Doha, A. H. Bhrawy, R. M. Hafez, and M. A. Abdelkawy, “A Chebyshev-Gauss-Radau scheme for nonlinear hyperbolic system of first order,” Applied Mathematics and Information Science, vol. 8, no. 2, pp. 1–10, 2014.
  50. A. H. Bhrawy, “A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients,” Applied Mathematics and Computation, vol. 222, pp. 255–264, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  51. E. H. Doha, D. Baleanu, A. H. Bhrawy, and M. A. Abdelkawy, “A Jacobi collocation method for solving nonlinear Burgers’-type equations,” Abstract and Applied Analysis, vol. 2013, Article ID 760542, 12 pages, 2013. View at Publisher · View at Google Scholar
  52. A. H. Bhrawy, L. M. Assas, and M. A. Alghamdi, “Fast spectral collocation method for solving nonlinear time-delayed Burgers-type equations with positive power terms,” Abstract and Applied Analysis, vol. 2013, Article ID 741278, 12 pages, 2013. View at Publisher · View at Google Scholar
  53. A. H. Bhrawy, L. M. Assas, and M. A. Alghamdi, “An efficient spectral collocation algorithm for nonlinear Phi-four equations,” Boundary Value Problems, vol. 2013, article 87, 16 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  54. A. Saadatmandi, “Bernstein operational matrix of fractional derivatives and its applications,” Applied Mathematical Modelling, 2013. View at Publisher · View at Google Scholar
  55. A. H. Bhrawy and A. S. Alofi, “A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 62–70, 2012. View at Publisher · View at Google Scholar · View at Scopus