About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 213853, 11 pages
http://dx.doi.org/10.1155/2013/213853
Research Article

Simulated Annealing-Based Krill Herd Algorithm for Global Optimization

1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2Graduate School of Chinese Academy of Sciences, Beijing 100039, China
3Department of Civil Engineering, University of Akron, Akron, OH 44325-3905, USA
4Department of Civil and Environmental Engineering, Engineering Building, Michigan State University, East Lansing, MI 48824, USA
5School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China

Received 27 December 2012; Accepted 1 April 2013

Academic Editor: Mohamed Tawhid

Copyright © 2013 Gai-Ge Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Recently, Gandomi and Alavi proposed a novel swarm intelligent method, called krill herd (KH), for global optimization. To enhance the performance of the KH method, in this paper, a new improved meta-heuristic simulated annealing-based krill herd (SKH) method is proposed for optimization tasks. A new krill selecting (KS) operator is used to refine krill behavior when updating krill’s position so as to enhance its reliability and robustness dealing with optimization problems. The introduced KS operator involves greedy strategy and accepting few not-so-good solutions with a low probability originally used in simulated annealing (SA). In addition, a kind of elitism scheme is used to save the best individuals in the population in the process of the krill updating. The merits of these improvements are verified by fourteen standard benchmarking functions and experimental results show that, in most cases, the performance of this improved meta-heuristic SKH method is superior to, or at least highly competitive with, the standard KH and other optimization methods.