About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 242941, 12 pages
http://dx.doi.org/10.1155/2013/242941
Research Article

Seismic Design Value Evaluation Based on Checking Records and Site Geological Conditions Using Artificial Neural Networks

1Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91207, Taiwan
2Faculty of Architecture, Design and Planning, University of Sydney, Sydney, NSW 2006, Australia

Received 8 February 2013; Accepted 25 April 2013

Academic Editor: Fuding Xie

Copyright © 2013 Tienfuan Kerh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Central Weather Bureau, “What is the zone division standard of anti-earthquake for general building in Taiwan?” Hundred Questions of Earthquake, 2005, http://scman.cwb.gov.tw/eqv5/eq100/100/058.htm.
  2. Construction and Planning Agency, “Revision of building anti-earthquake design code and explanation,” Ministry of the Interior, 2006, http://www.cpami.gov.tw/web/index.php?option=com_content&task=view&id=976&Itemid=95.
  3. S. E. Hough, T. Taniguchi, and J. R. Altidor, “Estimation of peak ground acceleration from horizontal rigid body displacement: a case study in Port-au-Prince, Haiti,” Bulletin of the Seismological Society of America, vol. 102, no. 6, pp. 2704–2713, 2012.
  4. H. Adeli and A. Panakkat, “A probabilistic neural network for earthquake magnitude prediction,” Neural Networks, vol. 22, no. 7, pp. 1018–1024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. K. V. Yuen, Bayesian Methods for Structural Dynamics and Civil Engineering, John Wiley & Sons, 2010.
  6. K. V. Yuen and H. Q. Mu, “Peak ground acceleration estimation by linear and nonlinear models with reduced order Monte Carlo simulation,” Computer-Aided Civil and Infrastructure Engineering, vol. 26, no. 1, pp. 30–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. I. Alves, “Earthquake forecasting using neural networks: results and future work,” Nonlinear Dynamics, vol. 44, no. 1–4, pp. 341–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Ghodrati Amiri and A. Bagheri, “Application of wavelet multiresolution analysis and artificial intelligence for generation of artificial earthquake accelerograms,” Structural Engineering and Mechanics, vol. 28, no. 2, pp. 153–166, 2008. View at Scopus
  9. C. R. Arjun and A. Kumar, “Neural network estimation of duration of strong ground motion using Japanese earthquake records,” Soil Dynamics and Earthquake Engineering, vol. 31, no. 7, pp. 866–872, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. H. Baziar and A. Ghorbani, “Evaluation of lateral spreading using artificial neural networks,” Soil Dynamics and Earthquake Engineering, vol. 25, no. 1, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Dai and C. MacBeth, “Application of back-propagation neural networks to identification of seismic arrival types,” Physics of the Earth and Planetary Interiors, vol. 101, no. 3-4, pp. 177–188, 1997. View at Scopus
  12. S. R. García, M. P. Romo, and J. M. Mayoral, “Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks,” Geofisica Internacional, vol. 46, no. 1, pp. 51–63, 2007. View at Scopus
  13. S. C. Lee and S. W. Han, “Neural-network-based models for generating artificial earthquakes and response spectra,” Computers and Structures, vol. 80, no. 20-21, pp. 1627–1638, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. C. C. J. Lin and J. Ghaboussi, “Generating multiple spectrum compatible accelerograms using stochastic neural networks,” Earthquake Engineering and Structural Dynamics, vol. 30, no. 7, pp. 1021–1042, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Panakkat and H. Adeli, “Neural network models for earthquake magnitude prediction using multiple seismicity indicators,” International Journal of Neural Systems, vol. 17, no. 1, pp. 13–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Panakkat and H. Adeli, “Recent efforts in earthquake prediction (1990-2007),” Natural Hazards Review, vol. 9, no. 2, pp. 70–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Panakkat and H. Adeli, “Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators,” Computer-Aided Civil and Infrastructure Engineering, vol. 24, no. 4, pp. 280–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. A. Tselentis and L. Vladutu, “An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms,” Natural Hazards and Earth System Science, vol. 10, no. 12, pp. 2527–2537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Kerh, J. S. Lai, D. Gunaratnam, and R. Saunders, “Evaluation of seismic design values in the Taiwan building code by using artificial neural network,” Computer Modeling in Engineering and Sciences, vol. 26, no. 1, pp. 1–12, 2008. View at Scopus
  20. T. Kerh and D. Chu, “Neural networks approach and microtremor measurements in estimating peak ground acceleration due to strong motion,” Advances in Engineering Software, vol. 33, no. 11-12, pp. 733–742, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kerh, D. Gunaratnam, and Y. Chan, “Neural computing with genetic algorithm in evaluating potentially hazardous metropolitan areas result from earthquake,” Neural Computing and Applications, vol. 19, no. 4, pp. 521–529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Kerh, Y. Chan, and D. Gunaratnam, “Treatment and assessment of nonlinear seismic data by a genetic algorithm based neural network model,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 10, no. 1, pp. 45–56, 2009. View at Scopus
  23. C. T. Huang, “A study on the earthquake potential damage and evaluation method—earthquake spectral research of considering regional site effect,” Project of National Science Council NSC 90-2625-Z-011-001, 2002.
  24. G. L. Wun, W. Y. Gien, and Y. W. Chang, “Strong ground motion site effect in Taiwan area,” Earthquake Technology Report MOTC-CWB-93-E-09, Central Weather Bureau, 2004.
  25. K. Günaydın and A. Günaydın, “Peak ground acceleration prediction by artificial neural networks for northwestern Turkey,” Mathematical Problems in Engineering, vol. 2008, Article ID 919420, 20 pages, 2008. View at Publisher · View at Google Scholar
  26. B. Derras, “Peak ground acceleration prediction using artificial neural networks approach: application to the Kik-Net data,” International Review of Civil Engineering, vol. 1, no. 3, pp. 243–252, 2010.
  27. Central Geological Survey, “Taiwan fault distribution map,” 2011, Ministry of Economic Affairs, http://fault.moeacgs.gov.tw/TaiwanFaults/Default.aspx?LFun=2.
  28. H. Tsai and G. F. Yang, Faults and Earthquakes of Taiwan, Walkers Cultural Enterprise Ltd, Taipei, Taiwan, 2004.
  29. Encyclopedia of Taiwan, “Geology,” 2012, http://taiwanpedia.culture.tw/web/index.
  30. K. Kuźniar, E. Maciag, and Z. Waszczyszyn, “Computation of response spectra from mining tremors using neural networks,” Soil Dynamics and Earthquake Engineering, vol. 25, no. 4, pp. 331–339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Lu, “Underground blast induced ground shock and its modelling using artificial neural network,” Computers and Geotechnics, vol. 32, no. 3, pp. 164–178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Mandal, S. Rao, and D. H. Raju, “Ocean wave parameters estimation using backpropagation neural networks,” Marine Structures, vol. 18, no. 3, pp. 301–318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Sarghini, G. Felice, and S. Santini, “Neural networks based subgrid scale modeling in large eddy simulations,” Computers and Fluids, vol. 32, no. 1, pp. 97–108, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Harmandar, E. Cakti, and M. Erdik, “A method for spatial estimation of peak ground acceleration in dense arrays,” Geophysical Journal International, vol. 191, no. 3, pp. 1272–1284, 2012.
  35. T. Kerh, C. H. Huang, and D. Gunaratnam, “Neural network approach for analyzing seismic data to identify potentially hazardous bridges,” Mathematical Problems in Engineering, vol. 2011, Article ID 464353, 15 pages, 2011. View at Publisher · View at Google Scholar
  36. T. Kerh, T. Ku, and D. Gunaratnam, “Comparative evaluations of the seismic key parameter by artificial neural network model and ambient vibration survey,” Disaster Advances, vol. 4, no. 2, pp. 5–12, 2011. View at Scopus
  37. T. Kerh and S. B. Ting, “Neural network estimation of ground peak acceleration at stations along Taiwan high-speed rail system,” Engineering Applications of Artificial Intelligence, vol. 18, no. 7, pp. 857–866, 2005. View at Publisher · View at Google Scholar · View at Scopus