About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 259125, 6 pages
http://dx.doi.org/10.1155/2013/259125
Research Article

Application of the Local Fractional Series Expansion Method and the Variational Iteration Method to the Helmholtz Equation Involving Local Fractional Derivative Operators

1College of Science, Hebei United University, Tangshan 063009, China
2College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
3School of Civil Engineering and Architecture, Chongqing Jiaotong University, Chongqing 400074, China
4Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada V8W 3R4
5Department of Mathematics and Mechanics, China University of Mining and Technology, Jiangsu, Xuzhou 221008, China

Received 31 July 2013; Accepted 17 October 2013

Academic Editor: Bashir Ahmad

Copyright © 2013 Ai-Min Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Kreß and G. F. Roach, “Transmission problems for the Helmholtz equation,” Journal of Mathematical Physics, vol. 19, no. 6, pp. 1433–1437, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. A. Deraemaeker, I. Babuška, and P. Bouillard, “Dispersion and pollution of the FEM solution for the helmholtz equation in one, two and three dimensions,” International Journal for Numerical Methods in Engineering, vol. 46, no. 4, pp. 471–499, 1999. View at Scopus
  3. A. Hannukainen, M. Huber, and J. Schöberl, “A mixed hybrid finite element method for the Helmholtz equation,” Journal of Modern Optics, vol. 58, no. 5-6, pp. 424–437, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. S. Momani and S. Abuasad, “Application of He's variational iteration method to Helmholtz equation,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1119–1123, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. M. Rafei and D. D. Ganji, “Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7, no. 3, pp. 321–328, 2006. View at Scopus
  6. J.-D. Benamou and B. Desprès, “A domain decomposition method for the Helmholtz equation and related optimal control problems,” Journal of Computational Physics, vol. 136, no. 1, pp. 68–82, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. M. M. Grigoriev and G. F. Dargush, “A fast multi-level boundary element method for the Helmholtz equation,” Computer Methods in Applied Mechanics and Engineering, vol. 193, no. 3–5, pp. 165–203, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. S. Tomioka, S. Nisiyama, M. Itagaki, and T. Enoto, “Internal field error reduction in boundary element analysis for Helmholtz equation,” Engineering Analysis with Boundary Elements, vol. 23, no. 3, pp. 211–222, 1999. View at Scopus
  9. O. F. Næss and K. S. Eckhoff, “A modified Fourier-Galerkin method for the Poisson and Helmholtz equations,” Journal of Scientific Computing, vol. 17, no. 1–4, pp. 529–539, 2002. View at Scopus
  10. C. M. Linton, “The Green's function for the two-dimensional Helmholtz equation in periodic domains,” Journal of Engineering Mathematics, vol. 33, no. 4, pp. 377–401, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. A. Dienstfrey, F. Hang, and J. Huang, “Lattice sums and the two-dimensional, periodic Green's function for the Helmholtz equation,” Proceedings of the Royal Society A, vol. 457, no. 2005, pp. 67–85, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. J. T. Machado, V. Kiryakova, and F. Mainardi, “Recent history of fractional calculus,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1140–1153, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  14. B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Institute for Nonlinear Science, Springer, New York, NY, USA, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  15. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006. View at MathSciNet
  16. R. L. Magin, Fractional Calculus in Bioengineering, Begerll House, West Redding, Conn, USA, 2006.
  17. J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, New York, NY, USA, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  18. G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, UK, 2008. View at MathSciNet
  19. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific Publishing, Singapore, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific Publishing, Singapore, 2011.
  21. J. Klafter, S. C. Lim, and R. Metzler, Fractional Dynamics: Recent Advances, World Scientific Publishing, Singapore, 2012. View at MathSciNet
  22. S. Das, Functional Fractional Calculus, Springer, Berlin, Germany, 2nd edition, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  23. V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Berlin, Germany, 2011.
  24. A. B. Malinowska and D. F. M. Torres, Introduction to the Fractional Calculus of Variations, Imperial College Press, London, UK, 2012. View at MathSciNet
  25. H. Sheng, Y. Chen, and T. Qiu, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications, Signals and Communication Technology, Springer, New York, NY, USA, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  26. D. Baleanu, J. A. T. Machado, and A. C. Luo, Fractional Dynamics and Control, Springer, New York, NY, USA, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  27. E. Goldfain, “Fractional dynamics, Cantorian space-time and the gauge hierarchy problem,” Chaos, Solitons & Fractals, vol. 22, no. 3, pp. 513–520, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. Samuel and A. Thomas, “On fractional Helmholtz equations,” Fractional Calculus & Applied Analysis, vol. 13, no. 3, pp. 295–308, 2010. View at Zentralblatt MATH · View at MathSciNet
  29. P. K. Gupta, A. Yildirim, and K. N. Rai, “Application of He's homotopy perturbation method for multi-dimensional fractional Helmholtz equation,” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22, no. 3-4, pp. 424–435, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  30. K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,” Physical Review Letters, vol. 80, no. 2, pp. 214–217, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. A. Carpinteri, B. Chiaia, and P. Cornetti, “On the mechanics of quasi-brittle materials with a fractal microstructure,” Engineering Fracture Mechanics, vol. 70, no. 16, pp. 2321–2349, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Ben Adda and J. Cresson, “About non-differentiable functions,” Journal of Mathematical Analysis and Applications, vol. 263, no. 2, pp. 721–737, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. A. Babakhani and V. Daftardar-Gejji, “On calculus of local fractional derivatives,” Journal of Mathematical Analysis and Applications, vol. 270, no. 1, pp. 66–79, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  34. Y. Chen, Y. Yan, and K. Zhang, “On the local fractional derivative,” Journal of Mathematical Analysis and Applications, vol. 362, no. 1, pp. 17–33, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. W. Chen, H. Sun, X. Zhang, and D. Korošak, “Anomalous diffusion modeling by fractal and fractional derivatives,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1754–1758, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  36. X.-J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong, 2011.
  37. X.-J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
  38. A. K. Golmankhaneh, V. Fazlollahi, and D. Baleanu, “Newtonian mechanics on fractals subset of real-line,” Romania Reports in Physics, vol. 65, pp. 84–93, 2013.
  39. Y.-J. Hao, H. M. Srivastava, H. Jafari, and X.-J. Yang, “Helmholtz and diffusion equations associated with local fractional derivative operators involving the Cantorian and Cantor-type cylindrical coordinates,” Advances in Mathematical Physics, vol. 2013, Article ID 754248, 5 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  40. A.-M. Yang, X.-J. Yang, and Z.-B. Li, “Local fractional series expansion method for solving wave and diffusion equations on Cantor sets,” Abstract and Applied Analysis, vol. 2013, Article ID 351057, 5 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  41. X.-J. Yang and D. Baleanu, “Fractal heat conduction problem solved by local fractional variation iteration method,” Thermal Science, vol. 17, no. 2, pp. 625–628, 2013.
  42. W.-H. Su, D. Baleanu, X.-J. Yang, and H. Jafari, “Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method,” Fixed Point Theory and Applications, vol. 2013, no. 1, article 89, pp. 1–11, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  43. Y.-J. Yang, D. Baleanu, and X.-J. Yang, “A local fractional variational iteration method for Laplace equation within local fractional operators,” Abstract and Applied Analysis, vol. 2013, Article ID 202650, 6 pages, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  44. J.-H. He, “Local fractional variational iteration method for fractal heat transfer in silk cocoon hierarchy,” Nonlinear Science Letters A, vol. 4, no. 1, pp. 15–20, 2013.