About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 280925, 7 pages
http://dx.doi.org/10.1155/2013/280925
Research Article

Dynamic Properties of the Solow Model with Increasing or Decreasing Population and Time-to-Build Technology

1Department of Management, Polytechnic University of Marche, Piazza Martelli 8, 60121 Ancona, Italy
2Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi 10, 56124 Pisa, Italy

Received 4 September 2013; Accepted 2 October 2013

Academic Editor: Carlo Bianca

Copyright © 2013 Luca Guerrini and Mauro Sodini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Fanti and P. Manfredi, “Population, unemployment and economic growth cycles: a further explanatory perspective,” Metroeconomica, vol. 54, no. 2-3, pp. 179–207, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. B. van Groezen and L. Meijdam, “Growing old and staying young: population policy in an ageing closed economy,” Journal of Population Economics, vol. 21, no. 3, pp. 573–588, 2008.
  3. B. van Groezen, T. Leers, and L. Meijdam, “Social security and endogenous fertility: pensions and child allowances as siamese twins,” Journal of Population Economics, vol. 87, no. 2, pp. 233–251, 2003.
  4. R. A. Pecchenino and P. S. Pollard, “Aging, myopia, and the pay-as-you-go public pension systems of the G7: a bright future?” Journal of Public Economic Theory, vol. 7, no. 3, pp. 449–470, 2005.
  5. R. J. Barro and G. S. Becker, “Fertility choice in a model of economic growth,” Econometrica, vol. 57, pp. 481–501, 1989.
  6. G. S. Becker, “An economic analysis of fertility,” in Demographic and Economic Change in Developed Countries, NBER, Ed., Princeton University Press, Princeton, NJ, USA, 1960.
  7. G. Becker, K. M. Murphy, and R. Tamura, “Human capital, fertility and economic growth,” in Journal of Political Economy, vol. 98, pp. 12–37, 1990.
  8. K. Blackburn and G. P. Cipriani, “A model of longevity, fertility and growth,” Journal of Economic Dynamics and Control, vol. 26, pp. 187–204, 2002.
  9. S. Chakraborty, “Endogenous lifetime and economic growth,” Journal of Economic Theory, vol. 116, no. 1, pp. 119–137, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. M. Sanso and G. Larramona, “Migration dynamics, growth and convergence,” Journal of Economic Dynamics & Control, vol. 30, pp. 2261–2279, 2006.
  11. R. H. Day, K. H. Kim, and D. Macunovich, “Complex demoeconomic dynamics,” Journal of Population Economics, vol. 2159, no. 2, p. 139, 1989.
  12. G. Feichtinger and G. Sorger, “Self-generating fertility waves in a nonlinear continuous overlapping generations model,” Journal of Population Economics, vol. 2, pp. 267–280, 1989.
  13. J. Benhabib and K. Nishimura, “Endogenous uctuations in the Barro-Becker theory of fertility,” in Demographic Change and Economic Development, A. Wenig and K. F. Zimmermann, Eds., vol. 41, pp. 29–41, Springer, Berlin, Germany, 1989.
  14. P. Manfredi and L. Fanti, “The complex effects of the interaction between the economy and population,” Structural Change and Economic Dynamics, vol. 17, pp. 148–173, 2006.
  15. P. Manfredi and L. Fanti, “Demography in macroeconomic models: when labour supply matters for economic cycles,” Metroeconomica, vol. 57, no. 4, pp. 536–563, 2006.
  16. L. Fanti and L. Gori, “Fertility-related pensions and cyclical instability,” Journal of Population Economics, vol. 26, no. 3, pp. 1209–1232, 2013.
  17. A. Bucci and L. Guerrini, “Transitional dynamics in the Solow-Swan growth model with AK technology and logistic population change,” B.E. Journal of Macroeconomics, vol. 916, no. 1, p. 1, 2009.
  18. L. Guerrini, “The Solow-Swan model with a bounded population growth rate,” Journal of Mathematical Economics, vol. 42, no. 1, pp. 14–21, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. C. Bianca, M. Ferrara, and L. Guerrini, “Hopf bifurcations in a delayed-energy-based model of capital accumulation,” Applied Mathematics & Information Sciences, vol. 7, no. 1, pp. 139–143, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  20. C. Bianca, M. Ferrara, and L. Guerrini, “The Cai model with time delay: existence of periodic solutions and asymptotic analysis,” Applied Mathematics & Information Sciences, vol. 7, no. 1, pp. 21–27, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  21. C. Bianca and L. Guerrini, “On the dalgaard-strulik model with logistic population growth rate and delayed-carrying capacity,” Acta Applicandae Mathematicae, vol. 128, pp. 39–48, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  22. P. J. Zak, “Kaleckian lags in general equilibrium,” Review of Political Economy, vol. 11, pp. 321–330, 1999.
  23. E. Beretta and Y. Kuang, “Geometric stability switch criteria in delay differential systems with delay dependent parameters,” SIAM Journal on Mathematical Analysis, vol. 33, no. 5, pp. 1144–1165, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. R. M. Solow, “A contribution to the theory of economic growth,” Quarterly Journal of Economics, vol. 70, pp. 65–94, 1956.
  25. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, Springer, New York, NY, USA, 1993. View at MathSciNet
  26. C. I. Jones, “R&D-based models of economic growth,” Journal of Political Economy, vol. 103, pp. 759–784, 1995.