About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 310679, 11 pages
Research Article

-Dimensional Fractional Lagrange's Inversion Theorem

1Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah, Saudi Arabia
2Department of Astronomy, Faculty of Science, Cairo University, Cairo 12613, Egypt

Received 10 November 2012; Revised 14 January 2013; Accepted 20 January 2013

Academic Editor: Ciprian A. Tudor

Copyright © 2013 F. A. Abd El-Salam. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Yverdon, Switzerland, 1993. View at MathSciNet
  2. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. View at MathSciNet
  3. R. L. Magin, Fractional Calculus in Bioengineering, Begell House, West Redding, Conn, USA, 2006.
  4. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  5. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  6. A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, vol. 378 of CISM Courses and Lectures, Springer, New York, NY, USA, 1997. View at MathSciNet
  7. R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  8. R. L. Magin, “Fractional calculus in bioengineering,” Critical Reviews in Biomedical Engineering, vol. 32, no. 1, pp. 1–104, 2004. View at Scopus
  9. R. L. Magin, “Fractional calculus in bioengineering, part 2,” Critical Reviews in Biomedical Engineering, vol. 32, no. 2, pp. 105–193, 2004.
  10. R. L. Magin, “Fractional calculus in bioengineering, part 3,” Critical Reviews in Biomedical Engineering, vol. 32, no. 3-4, pp. 193–377, 2004.
  11. J. Wang and Y. Zhou, “Analysis of nonlinear fractional control systems in Banach spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 17, pp. 5929–5942, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  12. R. Almeida and D. F. M. Torres, “Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1490–1500, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  13. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific, Hackensack, NJ, USA, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  14. A. Debbouche and D. Baleanu, “Exact null controllability for fractional nonlocal integrodifferential equations via implicit evolution system,” Journal of Applied Mathematics, vol. 2012, Article ID 931975, 17 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  15. A. Babakhani and D. Baleanu, “Existence and uniqueness of solution for a class of nonlinear fractional order differential equations,” Abstract and Applied Analysis, vol. 2012, Article ID 632681, 14 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  16. F. Riewe, “Nonconservative Lagrangian and Hamiltonian mechanics,” Physical Review E, vol. 53, no. 2, pp. 1890–1899, 1996. View at Publisher · View at Google Scholar · View at MathSciNet
  17. K. B. Oldham and J. Spanier, The Fractional Calculus, Mathematics in Science and Engineering, vol. 111, Academic Press, New York, NY, USA, 1974. View at MathSciNet
  18. J. L. Lagrange, “Nouvelle méthode pour résoudre les équations littérales par le moyen des séries,” Mémoires de l'Académie Royale des Sciences et Belles-Lettres de Berlin, vol. 24, pp. 251–326, 1770.
  19. M. Abramowitz and I. A. Stegun, Eds., “Lagrange's Expansion”. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York, NY, USA, 1972.
  20. H. H. Bürmann, “Essai de calcul fonctionnaire aux constantes ad-libitum,” in Versuch einer vereinfachten Analysis; ein Auszug eines Auszuges von Herrn Bürmann [Attempt at a Simplified Analysis; an Extract of an Abridgement by Mr. Bürmann], C. Friedrich, Ed., vol. 2 of Archiv der reinen und angewandten Mathematik [Archive of pure and applied mathematics], pp. 495–499, Schäferischen Buchhandlung, Leipzig, Germany.
  21. H. H. Bürmann, Formules du développement, de retour et d'integration, Soumis à l'Institut National de France. Le manuscrit de Bürmann est conservé dans les archives de l'ENPC à Paris, Paris, France, 1715.
  22. J. -L. Lagrange and A.-M. Legendre, “Rapport sur deux mémoires d'analyse du professeur Burmann,” Mémoires de l'Institut National des Sciences et Arts: Sciences Mathématiques et Physiques, vol. 2, pp. 13–17, 1799.
  23. P. S. de Laplace, Oeuvres, vol. 9, Oeuvres, Paris, France, 1843.
  24. E. Goursat, A Course in Mathematical Analysis: Vol 1: Derivatives and Differentials, Definite Integrals, Expansion in Series, Applications to Geometry, Dover, New York, NY, USA, 1959. View at MathSciNet
  25. C. Hermite, “Sur quelques développements en série de fonctions de plusieurs variables,” Comptes Rendus de l'Académie des Sciences des Paris, vol. 60, pp. 1–26, 1865.
  26. C. Hermite, Oeuvres, vol. 2, Gauthier-Villars, Paris, France, 1908.
  27. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I, McGraw-Hill, New York, NY, USA, 1953. View at MathSciNet