About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 348701, 6 pages
http://dx.doi.org/10.1155/2013/348701
Research Article

Some Remarks on the Extended Hartley-Hilbert and Fourier-Hilbert Transforms of Boehmians

1Department of Applied Sciences, Faculty of Engineering Technology, Al-Balqa' Applied University, Amman 11134, Jordan
2Department of Mathematics and Institute of Mathematical Research, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

Received 19 January 2013; Accepted 15 March 2013

Academic Editor: Mustafa Bayram

Copyright © 2013 S. K. Q. Al-Omari and A. Kılıçman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Zemanian, Generalized Integral Transformations, Dover Publications, New York, NY, USA, 2nd edition, 1987. View at MathSciNet
  2. R. S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Gordon and Breach Science Publishers, North Vancouver, Canada, 1997.
  3. S. K. Q. Al-Omari, D. Loonker, P. K. Banerji, and S. L. Kalla, “Fourier sine (cosine) transform for ultradistributions and their extensions to tempered and ultraBoehmian spaces,” Integral Transforms and Special Functions, vol. 19, no. 5-6, pp. 453–462, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. S. Al-Omari and A. Kılıçman, “On the generalized Hartley-Hilbert and fourier-Hilbert transforms,” Advances in Difference Equations, vol. 2012, p. 232, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  5. R. P. Millane, “Analytic properties of the Hartley transform and their applications,” Proceedings of the IEEE, vol. 82, no. 3, pp. 413–428, 1994.
  6. N. Sundararajan and Y. Srinivas, “Fourier-Hilbert versus Hartley-Hilbert transforms with some geophysical applications,” Journal of Applied Geophysics, vol. 71, no. 4, pp. 157–161, 2010. View at Publisher · View at Google Scholar
  7. N. Sundarajan, “Fourier and hartley transforms: a mathematical twin,” Indian Journal of Pure and Applied Mathematics, vol. 8, no. 10, pp. 1361–1365, 1997.
  8. T. K. Boehme, “The support of Mikusiński operators,” Transactions of the American Mathematical Society, vol. 176, pp. 319–334, 1973. View at Zentralblatt MATH · View at MathSciNet
  9. P. Mikusiński, “Fourier transform for integrable Boehmians,” The Rocky Mountain Journal of Mathematics, vol. 17, no. 3, pp. 577–582, 1987. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. K. Q. Al-Omari and A. Kılıçman, “On diffraction Fresnel transforms for Boehmians,” Abstract and Applied Analysis, vol. 2011, Article ID 712746, 11 pages, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. P. Mikusiński, “Tempered Boehmians and ultradistributions,” Proceedings of the American Mathematical Society, vol. 123, no. 3, pp. 813–817, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. S. K. Q. Al-Omari and A. Kılıçman, “Note on Boehmians for class of optical Fresnel wavelet transforms,” Journal of Function Spaces and Applications, vol. 2012, Article ID 405368, 14 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet