About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 357931, 7 pages
http://dx.doi.org/10.1155/2013/357931
Research Article

An Efficient Pseudospectral Method for Solving a Class of Nonlinear Optimal Control Problems

1Department of Mathematics, Islamic Azad University, Zahedan Branch, Zahedan, Iran
2Department of Mathematics, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
3Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

Received 10 March 2013; Accepted 30 July 2013

Academic Editor: Mustafa Bayram

Copyright © 2013 Emran Tohidi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Tohidi, F. Soleymani, and A. Kilicman, “Robustness of operational matrices of differentiation for solving state-space analysis and optimal control problems,” Abstract and Applied Analysis, vol. 2013, Article ID 535979, 9 pages, 2013. View at Publisher · View at Google Scholar
  3. J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, vol. 3 of Advances in Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2001. View at MathSciNet
  4. G. Elnagar, M. A. Kazemi, and M. Razzaghi, “The pseudospectral Legendre method for discretizing optimal control problems,” IEEE Transactions on Automatic Control, vol. 40, no. 10, pp. 1793–1796, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  5. F. Fahroo and I. M. Ross, “Direct trajectory optimization by a Chebyshev pseudospectral method,” Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 160–166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Tohidi, O. R. N. Samadi, and M. H. Farahi, “Legendre approximation for solving a class of nonlinear optimal control problems,” Journal of Mathematical Finance, vol. 1, pp. 8–13, 2011. View at Publisher · View at Google Scholar
  7. F. Toutounian, E. Tohidi, and A. Kilicman, “Fourier operational matrices of differentiation and transmission: Introduction and Applications,” Abstract and Applied Analysis, vol. 2013, Article ID 198926, 11 pages, 2013. View at Publisher · View at Google Scholar
  8. E. Tohidi and O. R. N. Samadi, “Optimal control of nonlinear Volterra integral equations via Legendre Polynomials,” IMA Journal of Mathematical Control and Information, vol. 30, no. 1, pp. 67–83. View at Publisher · View at Google Scholar
  9. A. E. Bryson, Jr. and Y. C. Ho, Applied Optimal Control, Hemisphere, New York, NY, USA, 1975. View at MathSciNet
  10. M. H. Noori Skandari and E. Tohidi, “Numerical solution of a class of nonlinear optimal control problems using linearization and discretization,” Applied Mathematics, vol. 2, no. 5, pp. 646–652, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  11. E. Tohidi and M. H. Noori Skandari, “A new approach for a class of nonlinear optimal control problems using linear combination property of intervals,” Journal of Computations and Modelling, vol. 1, pp. 145–156, 2011.
  12. M. Shamsi, “A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems,” Optimal Control Applications and Methods, vol. 32, no. 6, pp. 668–680, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. O. von Stryk, “Numerical solution of optimal control problems by direct collocation,” in Optional Control of Variations, Optimal Control Theory and Numerical Methods, R. Bulrisch, A. Miele, and J. Stoer, Eds., International Series of Numerical Mathematics, pp. 129–143, Birkhäuser, Basel, Switzerland, 1993. View at MathSciNet