About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 357971, 10 pages
http://dx.doi.org/10.1155/2013/357971
Research Article

Leader-Following Consensus Stability of Discrete-Time Linear Multiagent Systems with Observer-Based Protocols

1Institute of Intelligent Systems and Decision, Wenzhou University, Zhejiang 325035, China
2Wenzhou Vocational College of Science & Technology, Zhejiang 325006, China

Received 16 February 2013; Accepted 26 August 2013

Academic Editor: Pagavathi Balasubramaniam

Copyright © 2013 Bingbing Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Krause, G. D. Ruxton, and S. Krause, “Swarm intelligence in animals and humans,” Trends in Ecology & Evolution, vol. 25, no. 1, pp. 28–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Vicsek, A. Czirk, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Physical Review Letters, vol. 75, no. 6, pp. 1226–1229, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kalantar and U. R. Zimmer, “Distributed shape control of homogeneous swarms of autonomous underwater vehicles,” Autonomous Robots, vol. 22, no. 1, pp. 37–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Yoon and C. Qiao, “Cooperative search and survey using Autonomous Underwater Vehicles (AUVs),” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 3, pp. 364–379, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Huang, Q. Song, and C. Feng, “Multistability in networks with self-excitation and high-order synaptic connectivity,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 8, pp. 2144–2155, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  6. E. Kaslik and S. Sivasundaram, “Multiple periodic solutions in impulsive hybrid neural networks with delays,” Applied Mathematics and Computation, vol. 217, no. 10, pp. 4890–4899, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. W. Yu, G. Chen, Z. Wang, and W. Yang, “Distributed consensus filtering in sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 39, no. 6, pp. 1568–1577, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous agents using nearest neighbor rules,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  9. W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  10. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  11. R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. J. Hu and Y. Hong, “Leader-following coordination of multi-agent systems with coupling time delays,” Physica A, vol. 374, no. 2, pp. 853–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for leader-following control of multi-agent networks,” Automatica, vol. 44, no. 3, pp. 846–850, 2008. View at Publisher · View at Google Scholar · View at MathSciNet
  15. W. Ni and D. Cheng, “Leader-following consensus of multi-agent systems under fixed and switching topologies,” Systems & Control Letters, vol. 59, no. 3-4, pp. 209–217, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. Z.-J. Tang, T.-Z. Huang, J.-L. Shao, and J.-P. Hu, “Leader-following consensus for multi-agent systems via sampled-data control,” IET Control Theory & Applications, vol. 5, no. 14, pp. 1658–1665, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  17. L. Gao, X. Zhu, and W. Chen, “Leader-following consensus problem with an accelerated motion leader,” International Journal of Control, Automation, and Systems, vol. 10, no. 5, pp. 931–939, 2012. View at Publisher · View at Google Scholar
  18. Y. Hong and X. Wang, “Multi-agent tracking of a high-dimensional active leader with switching topology,” Journal of Systems Science and Complexity, vol. 22, no. 4, pp. 722–731, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  19. L. Gao, Y. Tang, W. Chen, and H. Zhang, “Consensus seeking in multi-agent systems with an active leader and communication delays,” Kybernetika, vol. 47, no. 5, pp. 773–789, 2011. View at Zentralblatt MATH · View at MathSciNet
  20. Z. Li, Z. Duan, G. Chen, and L. Huang, “Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 1, pp. 213–224, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  21. Z. Li, Z. Duan, and G. Chen, “Dynamic consensus of linear multi-agent systems,” IET Control Theory and Applications, vol. 5, no. 1, pp. 19–28, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  22. H. Zhang, F. L. Lewis, and A. Das, “Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback,” IEEE Transactions on Automatic Control, vol. 56, no. 8, pp. 1948–1952, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  23. K. Hengster-Movric and F. Lewis, “Cooperative observers and regulators for discrete-time multiagent systems,” International Journal of Robust and Nonlinear Control, vol. 23, no. 14, pp. 1545–1562, 2013. View at Publisher · View at Google Scholar
  24. L. Gao, X. Zhu, W. Chen, and H. Zhang, “Leader-following consensus of linear multiagent systems with state observer under switching topologies,” Mathematical Problems in Engineering, vol. 2013, Article ID 873140, 12 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  25. H. Li, “Observer-type consensus protocol for a class of fractional-order uncertain multiagent systems,” Abstract and Applied Analysis, vol. 2012, Article ID 672346, 18 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. Z. Li, X. Liu, P. Lin, and W. Ren, “Consensus of linear multi-agent systems with reduced-order observer-based protocols,” Systems & Control Letters, vol. 60, no. 7, pp. 510–516, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. Y. Zhang, L. Gao, and C. Tong, “On distributed reduced-order observer-based protocol for linear multiagent consensus under switching topology,” Abstract and Applied Analysis, vol. 2013, Article ID 793276, 13 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  28. J. H. Seo, H. Shim, and J. Back, “Consensus of high-order linear systems using dynamic output feedback compensator: low gain approach,” Automatica, vol. 45, no. 11, pp. 2659–2664, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. Y. Liu and Y. Jia, “H consensus control of multi-agent systems with switching topology: a dynamic output feedback protocol,” International Journal of Control, vol. 83, no. 3, pp. 527–537, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. L. Gao, C. Tong, and L. Wang, “H dynamic output feedback consensus control for discrete-time multi-agent systems with switching topology,” The Arabian Journal for Science and Engineering, 2013. View at Publisher · View at Google Scholar
  31. Z. Huang, X. Wang, and C. Feng, “Multiperiodicity of periodically oscillated discrete-time neural networks with transient excitatory self-connections and sigmoidal nonlinearities,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1643–1655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Huang, X. Wang, and M. Sannay, “Self-excitation of neurons leads to multiperiodicity of discrete-time neural networks with distributed delays,” Science China, vol. 54, no. 2, pp. 305–317, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  33. E. Kaslik and S. Sivasundaram, “Impulsive hybrid discrete-time Hopfield neural networks with delays and multistability analysis,” Neural Networks, vol. 24, no. 4, pp. 370–377, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  34. Y. Cao and W. Ren, “Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction,” International Journal of Control, vol. 83, no. 3, pp. 506–515, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  35. K. You and L. Xie, “Network topology and communication data rate for consensusability of discrete-time multi-agent systems,” IEEE Transactions on Automatic Control, vol. 56, no. 10, pp. 2262–2275, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  36. F. Xiao and L. Wang, “Dynamic behavior of discrete-time multiagent systems with general communication structures,” Physica A, vol. 370, no. 2, pp. 364–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Xiao and L. Wang, “Consensus protocols for discrete-time multi-agent systems with time-varying delays,” Automatica, vol. 44, no. 10, pp. 2577–2582, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  38. P. Lin and Y. Jia, “Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies,” Automatica, vol. 45, no. 9, pp. 2154–2158, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  39. J. Qin and H. Gao, “A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays,” IEEE Transactions on Automatic Control, vol. 57, no. 9, pp. 2417–2422, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  40. Y. Su and J. Huang, “Two consensus problems for discrete-time multi-agent systems with switching network topology,” Automatica, vol. 48, no. 9, pp. 1988–1997, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  41. K. Hengster-Movric, K. You, F. L. Lewis, and L. Xie, “Synchronization of discrete-time multi-agent systems on graphs using Riccati design,” Automatica, vol. 49, no. 2, pp. 414–423, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  42. K. You and L. Xie, “Coordination of discrete-time multi-agent systems via relative output feedback,” International Journal of Robust and Nonlinear Control, vol. 21, no. 13, pp. 1587–1605, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  43. X. Xu, S. Chen, W. Huang, and L. Gao, “Leader-following consensus of discrete-time multi-agent systems with observer-based protocols,” Neurocomputing, vol. 118, no. 22, pp. 334–341, 2013. View at Publisher · View at Google Scholar
  44. L. Scardovi and R. Sepulchre, “Synchronization in networks of identical linear systems,” Automatica, vol. 45, no. 11, pp. 2557–2562, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  45. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  46. L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry, “Foundations of control and estimation over lossy networks,” Proceedings of the IEEE, vol. 95, no. 1, pp. 163–187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, NY, USA, 1985. View at MathSciNet