About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 358010, 6 pages
http://dx.doi.org/10.1155/2013/358010
Research Article

Multiple Input Delays Estimation Using an Artificial Bee Colony Algorithm

Department of Computer and Communication, Shu-Te University, Kaohsiung 824, Taiwan

Received 6 June 2013; Accepted 15 August 2013

Academic Editor: Chang-Hua Lien

Copyright © 2013 Wei-Der Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3, pp. 459–471, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. N. Karaboga, “A new design method based on artificial bee colony algorithm for digital IIR filters,” Journal of the Franklin Institute, vol. 346, no. 4, pp. 328–348, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. D. Karaboga and C. Ozturk, “A novel clustering approach: artificial bee colony (ABC) algorithm,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 652–657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive survey: artificial bee colony (ABC) algorithm and applications,” Artificial Intelligence Review, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. W. D. Chang, “Nonlinear CSTR control system design using an artificial bee colony algorithm,” Simulation Modelling Practice and Theory, vol. 31, pp. 1–9, 2013. View at Publisher · View at Google Scholar
  6. D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp. 108–132, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. K. Ayan and U. Kiliç, “Artificial bee colony algorithm solution for optimal reactive power flow,” Applied Soft Computing Journal, vol. 12, no. 5, pp. 1477–1482, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Yildiz, “Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach,” Information Sciences, vol. 220, pp. 399–407, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  9. S. J. Huang and X. Z. Liu, “Application of artificial bee colony-based optimization for fault section estimation in power systems,” Electrical Power and Energy Systems, vol. 44, no. 1, pp. 210–218, 2013. View at Publisher · View at Google Scholar
  10. A. Khorsandi, S. H. Hosseinian, and A. Ghazanfari, “Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem,” Electrical Power Systems Research, vol. 95, pp. 206–213, 2013. View at Publisher · View at Google Scholar
  11. A. R. Yildiz, “A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing,” Applied Soft Computing, vol. 13, no. 5, pp. 2906–2912, 2013. View at Publisher · View at Google Scholar
  12. S. Selvanathan and A. K. Tangirala, “Time-delay estimation in multivariate systems using Hilbert transform relation and partial coherence functions,” Chemical Engineering Science, vol. 65, no. 2, pp. 660–674, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Ni, D. Xiao, and S. L. Shah, “Time delay estimation for MIMO dynamical systems—with time-frequency domain analysis,” Journal of Process Control, vol. 20, no. 1, pp. 83–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Assous and L. Linnett, “High resolution time delay estimation using sliding discrete Fourier transform,” Digital Signal Processing, vol. 22, no. 5, pp. 820–827, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  15. S. Shaltaf, “Neuro-fuzzy based time-delay estimation using DCT coefficients,” ISA Transactions, vol. 46, no. 1, pp. 21–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Waschburger and R. K. H. Galvao, “Time delay estimation in discrete-time state-space models,” Signal Processing, vol. 93, no. 4, pp. 904–912, 2013. View at Publisher · View at Google Scholar
  17. B. S. Chen and J. C. Hung, “A global estimation for multichannel time-delay and signal parameters via genetic algorithm,” Signal Processing, vol. 81, no. 5, pp. 1061–1067, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Akay and D. Karaboga, “A modified artificial bee colony algorithm for real-parameter optimization,” Information Sciences, vol. 192, pp. 120–142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Karaboga, C. Ozturk, N. Karaboga, and B. Gorkemli, “Artificial bee colony programming for symbolic regression,” Information Sciences, vol. 209, pp. 1–15, 2012. View at Publisher · View at Google Scholar