About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 364042, 7 pages
http://dx.doi.org/10.1155/2013/364042
Research Article

Time-Space Fractional Heat Equation in the Unit Disk

1Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia

Received 2 December 2012; Accepted 12 February 2013

Academic Editor: Juan J. Trujillo

Copyright © 2013 Rabha W. Ibrahim and Hamid A. Jalab. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Vázquez, J. J. Trujillo, and M. P. Velasco, “Fractional heat equation and the second law of thermodynamics,” Fractional Calculus and Applied Analysis, vol. 14, no. 3, pp. 334–342, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  2. I. Karatay and S. R. Bayramoglu, “A characteristic difference scheme for time-fractional heat equations based on the Crank-Nicholson difference schemes,” Abstract and Applied Analysis, vol. 2012, Article ID 548292, 11 pages, 2012. View at Publisher · View at Google Scholar
  3. Y. Hu, D. Nualart, and J. Song, “Feynman-Kac formula for heat equation driven by fractional white noise,” The Annals of Probability, vol. 39, no. 1, pp. 291–326, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. M. Khan and M. A. Gondal, “Restrictions and improvements of Laplace decomposition method,” Journal of Advanced Research in Scientific Computing, vol. 3, no. 1, pp. 8–14, 2011. View at MathSciNet
  5. Y. Povstenko, “Time-fractional radial heat conduction in a cylinder and associated thermal stresses,” Archive of Applied Mechanics, vol. 82, no. 3, pp. 345–362, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calf, USA, 1999. View at MathSciNet
  7. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. View at MathSciNet
  8. H. M. Srivastava, M. Darus, and R. W. Ibrahim, “Classes of analytic functions with fractional powers defined by means of a certain linear operator,” Integral Transforms and Special Functions, vol. 22, no. 1, pp. 17–28, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. H. M. Srivastava and S. Owa, Eds., Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood Series: Mathematics and Its Applications, John Wiley & Sons, New York, NY, USA, 1989. View at MathSciNet
  10. R. W. Ibrahim, “On generalized Srivastava-Owa fractional operators in the unit disk,” Advances in Difference Equations, vol. 2011, article 55, 10 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  11. R. W. Ibrahim, “Ulam stability for fractional differential equation in complex domain,” Abstract and Applied Analysis, vol. 2012, Article ID 649517, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. R. W. Ibrahim, “On generalized Hyers-Ulam stability of admissible functions,” Abstract and Applied Analysis, vol. 2012, Article ID 749084, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. R. W. Ibrahim, “Ulam-Hyers stability for Cauchy fractional differential equation in the unit disk,” Abstract and Applied Analysis, vol. 2012, Article ID 613270, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. R. W. Ibrahim, “Fractional complex transforms for fractional differential equations,” Advances in Difference Equations, vol. 2012, article 192, 12 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  15. H. A. Jalab and R. W. Ibrahim, “Denoising algorithm based on generalized fractional integral operator with two parameters,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 529849, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. R. W. Ibrahim, “On holomorphic solution for space- and time-fractional telegraph equations in complex domain,” Journal of Function Spaces and Applications, vol. 2012, Article ID 703681, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet