About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 368529, 7 pages
http://dx.doi.org/10.1155/2013/368529
Research Article

A Structural Equation Model for Analysis of Factors Associated with the Choice of Engineering Degrees in a Technical University

1Universitat Politècnica de València, 46022 Valencia, Spain
2Instituto Universitario de Matemática Multidisciplinar (IMM), 46022 Valencia, Spain
3Institut de Recerca en Cervell, Cognició i Conducta (IR3C), Facultat de Psicologia, Universitat de Barcelona, 08035 Barcelona, Spain

Received 21 May 2013; Accepted 2 July 2013

Academic Editor: Rafael Jacinto Villanueva Micó

Copyright © 2013 Antonio Hervás et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Many different factors are taken into account by students when choosing a degree and university. Some of these are general considerations, such as the quality of the degree course (ratio of available places/places in first choice, cut-off mark, etc.), while others are subjective factors (e.g., friends doing the same course). This paper presents a partial multivariate model that considers the weight of the different variables linked to this decision, as identified in the bibliography. We analyzed four samples of first-year students (total ) from different engineering degree courses at the Universitat Politècnica de València (UPV) in the 2010-2011 and 2011-2012 academic years. All the students involved in the study had chosen this university and their courses as their first option. The overall effect shows that the structural model adjusts reasonably well to the different engineering courses analyzed. Similarly, the individual models for each engineering degree manage to identify the different effects involved. In the case of the engineering degree based on new technologies (ICT), the statistical effects are much greater and more statistically significant than in the other three branches of engineering considered. Social and individual factors were seen to have more impact on the choice of ICT degrees at the UPV.