About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 382834, 19 pages
http://dx.doi.org/10.1155/2013/382834
Research Article

Identification of Unknown Parameters and Orders via Cuckoo Search Oriented Statistically by Differential Evolution for Noncommensurate Fractional-Order Chaotic Systems

1Department of Mathematics, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
2Department of Statistics, School of Science, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China

Received 1 May 2013; Accepted 8 October 2013

Academic Editor: Abdelghani Bellouquid

Copyright © 2013 Fei Gao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Caponetto and S. Fazzino, “A semi-analytical method for the computation of the Lyapunov exponents of fractional-order systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 22–27, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  2. M. S. Tavazoei and M. Haeri, “A necessary condition for double scroll attractor existence in fractional-order systems,” Physics Letters A, vol. 367, no. 1-2, pp. 102–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional lorenz system,” Physical Review Letters, vol. 91, no. 42, Article ID 034101, 2003. View at Publisher · View at Google Scholar
  4. S. K. Agrawal, M. Srivastava, and S. Das, “Synchronization of fractional order chaotic systems using active control method,” Chaos, Solitons & Fractals, vol. 45, no. 6, pp. 737–752, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. Q. Yang and C. Zeng, “Chaos in fractional conjugate Lorenz system and its scaling attractors,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 12, pp. 4041–4051, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  6. K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1–4, pp. 3–22, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  7. Y. Tang, X. Zhang, C. Hua, L. Li, and Y. Yang, “Parameter identification of commensurate fractional-order chaotic system via differential evolution,” Physics Letters A, vol. 376, no. 4, pp. 457–464, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Yu, H.-X. Li, S. Wang, and J. Yu, “Dynamic analysis of a fractional-order Lorenz chaotic system,” Chaos, Solitons & Fractals, vol. 42, no. 2, pp. 1181–1189, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  9. L.-G. Yuan and Q.-G. Yang, “Parameter identification and synchronization of fractional-order chaotic systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 305–316, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. J. B. Hu, J. Xiao, and L. D. Zhao, “Synchronizing an improper fractional Chen chaotic system,” Journal of Shanghai University. Natural Science, vol. 17, no. 6, pp. 734–739, 2011. View at MathSciNet
  11. C. Li and G. Peng, “Chaos in Chen's system with a fractional order,” Chaos, Solitons & Fractals, vol. 22, no. 2, pp. 443–450, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  12. C. Li and G. Chen, “Chaos and hyperchaos in the fractional-order Rössler equations,” Physica A, vol. 341, no. 1–4, pp. 55–61, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. W. Deng, E. Shulin, D. Sun, P. Wang, D. Zhang, and W. Xu, “Fabrication of vertical coupled polymer microring resonator,” in ICO20: Optical Communication, Y.-C. Chung and S. Xie, Eds., vol. 6025 of Proceedings of SPIE, pp. 334–339, 2006. View at Publisher · View at Google Scholar
  14. L. Song, J. Yang, and S. Xu, “Chaos synchronization for a class of nonlinear oscillators with fractional order,” Nonlinear Analysis: Theory, Methods and Applications, vol. 72, no. 5, pp. 2326–2336, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  15. R.-X. Zhang, Y. Yang, and S.-P. Yang, “Adaptive synchronization of the fractional-order unified chaotic system,” Acta Physica Sinica, vol. 58, no. 9, pp. 6039–6044, 2009. View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  16. W. H. Deng and C. P. Li, “Chaos synchronization of the fractional Lü system,” Physica A, vol. 353, no. 1–4, pp. 61–72, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Deng, T. Li, Q. Wang, and H. Li, “A fractional-order hyperchaotic system and its synchronization,” Chaos, Solitons & Fractals, vol. 41, no. 2, pp. 962–969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. P. Li, W. H. Deng, and D. Xu, “Chaos synchronization of the Chua system with a fractional order,” Physica A, vol. 360, no. 2, pp. 171–185, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. W. Deng and J. Lü, “Generating multi-directional multi-scroll chaotic attractors via a fractional differential hysteresis system,” Physics Letters A, vol. 369, no. 5-6, pp. 438–443, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. M. Odibat, N. Corson, M. A. Aziz-Alaoui, and C. Bertelle, “Synchronization of chaotic fractional-order systems via linear control,” International Journal of Bifurcation and Chaos, vol. 20, no. 1, pp. 81–97, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. Z. Odibat, “A note on phase synchronization in coupled chaotic fractional order systems,” Nonlinear Analysis: Real World Applications, vol. 13, no. 2, pp. 779–789, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  22. X. Wu, D. Lai, and H. Lu, “Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes,” Nonlinear Dynamics, vol. 69, no. 1-2, pp. 667–683, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. K. Sun and J. C. Sprott, “Bifurcations of fractional-order diffusionless lorenz system,” Electronic Journal of Theoretical Physics, vol. 6, no. 22, pp. 123–134, 2009. View at Scopus
  24. X.-J. Wu and S.-L. Shen, “Chaos in the fractional-order Lorenz system,” International Journal of Computer Mathematics, vol. 86, no. 7, pp. 1274–1282, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. E. Kaslik and S. Sivasundaram, “Analytical and numerical methods for the stability analysis of linear fractional delay differential equations,” Journal of Computational and Applied Mathematics, vol. 236, no. 16, pp. 4027–4041, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. S. Bhalekar and V. Daftardar-Gejji, “Fractional ordered Liu system with time-delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 8, pp. 2178–2191, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  27. J. G. Lu and G. Chen, “A note on the fractional-order Chen system,” Chaos, Solitons & Fractals, vol. 27, no. 3, pp. 685–688, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Al-Assaf, R. El-Khazali, and W. Ahmad, “Identification of fractional chaotic system parameters,” Chaos, Solitons & Fractals, vol. 22, no. 4, pp. 897–905, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. E. H. Doha, A. H. Bhrawy, and S. S. Ezz-Eldien, “A new Jacobi operational matrix: an application for solving fractional differential equations,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 4931–4943, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. G. Si, Z. Sun, Y. Zhang, and W. Chen, “Projective synchronization of different fractional-order chaotic systems with non-identical orders,” Nonlinear Analysis: Real World Applications, vol. 13, no. 4, pp. 1761–1771, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  31. K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229–248, 2002. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  32. W. Deng, C. Li, and J. Lü, “Stability analysis of linear fractional differential system with multiple time delays,” Nonlinear Dynamics, vol. 48, no. 4, pp. 409–416, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  33. M. S. Tavazoei and M. Haeri, “Chaotic attractors in incommensurate fractional order systems,” Physica D, vol. 237, no. 20, pp. 2628–2637, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  34. G. Si, Z. Sun, H. Zhang, and Y. Zhang, “Parameter estimation and topology identification of uncertain fractional order complex networks,” CommuNications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 5158–5171, 2012. View at Publisher · View at Google Scholar
  35. G. Si, Z. Sun, H. Zhang, and Y. Zhang, “Parameter estimation and topology identification of uncertain fractional order complex networks,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 5158–5171, 2012. View at Publisher · View at Google Scholar
  36. F. Gao, F.-X. Fei, X.-J. Lee, H.-Q. Tong, Y.-F. Deng, and H.-L. Zhao, “Inversion mechanism with functional extrema model for identification incommensurate and hyper fractional chaos via differential evolution,” Expert Systems with Applications, vol. 41, no. 4(2), pp. 1915–1927, 2014. View at Publisher · View at Google Scholar
  37. I. Publications, Ed., Cuckoo Search via Levy Ights, 2009.
  38. X.-S. Yang and S. Deb, “Engineering optimisation by cuckoo search,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. X.-S. Yang and S. Deb, “Multiobjective cuckoo search for design optimization,” Computers & Operations Research, vol. 40, no. 6, pp. 1616–1624, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  40. C. Li and C. Tao, “On the fractional Adams method,” Computers and Mathematics with Applications, vol. 58, no. 8, pp. 1573–1588, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  41. K. Diethelm, “An efficient parallel algorithm for the numerical solution of fractional differential equations,” Fractional Calculus and Applied Analysis, vol. 14, no. 3, pp. 475–490, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  42. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, North-Holland, Amsterdam, The Netherlands, 2006.
  43. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at MathSciNet
  44. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993. View at MathSciNet
  45. K. B. Oldham and J. Spanier, The Fractional Calculus, vol. 111 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1974. View at MathSciNet
  46. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at MathSciNet
  47. I. Petráš, “Fractional-order chaotic systems,” in Fractional-Order Nonlinear Systems, Nonlinear Physical Science, pp. 103–184, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  48. I. Petráš, “Fractional calculus,” in Nonlinear Physica, pp. 7–42, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  49. J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, Complex Adaptive Systems, MIT Press, Cambridge, MA, USA, 1992.
  50. J. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs, MIT Press, 1994.
  51. R. Poli, W. Langdon, and N. McPhee, A Field Guide to Genetic Programming, Lulu Enterprises, Essex, UK, 2008.
  52. A. H. Gandomi and A. H. Alavi, “A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems,” Neural Computing & Applications, vol. 21, no. 1, pp. 171–187, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. H. Gandomi and A. H. Alavi, “A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems,” Neural Computing & Applications, vol. 21, no. 1, pp. 189–201, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Ikeda, “Estimation of chaotic ordinary differential equations by coevolutional genetic programming,” Electronics and Communications in Japan, Part III, vol. 86, no. 2, pp. 1–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. J. Kirstukas, K. M. Bryden, and D. A. Ashlock, “A hybrid genetic programming approach for the analytical solution of differential equations,” International Journal of General Systems, vol. 34, no. 3, pp. 279–299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Varadan and H. Leung, “Chaotic system reconstruction from noisy time series measurements using improved least squares genetic programming,” in IEEE International Symposium on Circuits and Systems (ISCAS '02), vol. 3, pp. 65–68, May 2002. View at Scopus
  57. W. Zhang, Z.-M. Wu, and G.-K. Yang, “Genetic programming-based chaotic time series modeling,” Journal of Zhejiang University: Science, vol. 5, no. 11, pp. 1432–1439, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. W. Zhang, G.-K. Yang, and Z.-M. Wu, “Genetic programming-based modeling on chaotic time series,” in Proceedings of International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2347–2352, August 2004. View at Scopus
  59. V. Varadan and H. Leung, “Reconstruction of polynomial systems from noisy time-series measurements using genetic programming,” IEEE Transactions on Industrial Electronics, vol. 48, no. 4, pp. 742–748, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Zelinka and A. Raidl, “Evolutionary reconstruction of chaotic systems,” in Studies in Computational Intelligence, vol. 267, chapter 8, pp. 265–291, Springer, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Zelinka, D. Davendra, R. Senkerik, and R. Jasek, “An investigation on evolutionary identification of continuous chaotic systems,” in Proceedings of the 4th Global Conference on Power Control and Optimization, AIP Conference Series, pp. 280–284, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, and R. Jasek, “An investigation on evolutionary reconstruction of continuous chaotic systems,” Mathematical and Computer Modelling, vol. 57, no. 1-2, pp. 2–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Gao, J.-J. Lee, Z. Li, H. Tong, and X. Lü, “Parameter estimation for chaotic system with initial random noises by particle swarm optimization,” Chaos, Solitons & Fractals, vol. 42, no. 2, pp. 1286–1291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Gao, Y. Qi, I. Balasingham, Q. Yin, and H. Gao, “A Novel non-Lyapunov way for detecting uncertain parameters of chaos system with random noises,” Expert Systems with Applications, vol. 39, no. 2, pp. 1779–1783, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. X.-P. Guan, H.-P. Peng, L.-X. Li, and Y.-Q. Wang, “Parameters identification and control of Lorenz chaotic system,” Acta Physica Sinica, vol. 50, no. 1, p. 29, 2001. View at Scopus
  66. U. Parlitz, “Estimating model parameters from time series by autosynchronization,” Physical Review Letters, vol. 76, no. 8, pp. 1232–1235, 1996. View at Scopus
  67. L. Li, Y. Yang, H. Peng, and X. Wang, “Parameters identification of chaotic systems via chaotic ant swarm,” Chaos, Solitons & Fractals, vol. 28, no. 5, pp. 1204–1211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. W.-D. Chang, “Parameter identification of Chen and Lü systems: a differential evolution approach,” Chaos, Solitons & Fractals, vol. 32, no. 4, pp. 1469–1476, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J.-F. Chang, Y.-S. Yang, T.-L. Liao, and J.-J. Yan, “Parameter identification of chaotic systems using evolutionary programming approach,” Expert Systems with Applications, vol. 35, no. 4, pp. 2074–2079, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Gao, Z.-Q. Li, and H.-Q. Tong, “Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization,” Chinese Physics B, vol. 17, no. 4, pp. 1196–1201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Gao and H.-Q. Tong, “Parameter estimation for chaotic system based on particle swarm optimization,” Acta Physica Sinica, vol. 55, no. 2, pp. 577–582, 2006. View at Scopus
  72. L. Shen and M. Wang, “Robust synchronization and parameter identification on a class of uncertain chaotic systems,” Chaos, Solitons & Fractals, vol. 38, no. 1, pp. 106–111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Yang, K. Maginu, and H. Nomura, “Parameters identification of chaotic systems by quantum-behaved particle swarm optimization,” International Journal of Computer Mathematics, vol. 86, no. 12, pp. 2225–2235, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  74. F. Gao, Y. Qi, Q. Yin, and J. Xiao, “Solving problems in chaos control though an differential evolution algorithm with region zooming,” Applied Mechanics and Materials, vol. 110-116, pp. 5048–5056, 2012. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Gao, F.-X. Fei, Q. Xu, Y.-F. Deng, Y.-B. Qi, and I. Balasingham, “A novel artificial bee colony algorithm with space contraction for unknown parameters identification and time-delays of chaotic systems,” Applied Mathematics and Computation, vol. 219, no. 2, pp. 552–568, 2012. View at Publisher · View at Google Scholar
  76. E. N. Lorénz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, vol. 20, no. 2, pp. 130–141, 1963.
  77. J. G. Lu, “Chaotic dynamics of the fractional-order Lü system and its synchronization,” Physics Letters A, vol. 354, no. 4, pp. 305–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Li and G. Chen, “Chaos in the fractional order Chen system and its control,” Chaos, Solitons & Fractals, vol. 22, no. 3, pp. 549–554, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  80. F. Gao and H. Tong, “Computing two linchpins of topological degree by a novel differential evolution algorithm,” International Journal of Computational Intelligence and Applications, vol. 5, no. 3, pp. 335–350, 2005.
  81. F. Gao, “Computing unstable Period orbits of discrete chaotic system though differential evolutionary algorithms basing on elite subspace,” System Engineering Theory and Practice, vol. 25, no. 4, pp. 96–102, 2005. View at Scopus
  82. C.-W. Chiang, W.-P. Lee, and J.-S. Heh, “A 2-Opt based differential evolution for global optimization,” Applied Soft Computing Journal, vol. 10, no. 4, pp. 1200–1207, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural Computing Series, Springer, Berlin, Germany, 2005. View at MathSciNet
  84. J. G. Lu, “Chaotic dynamics and synchronization of fractional-order Arneodo's systems,” Chaos, Solitons & Fractals, vol. 26, no. 4, pp. 1125–1133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. J.-G. Lu, “Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems,” Chinese Physics, vol. 14, no. 8, pp. 1517–1521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. I. Petráš, “A note on the fractional-order Chua's system,” Chaos, Solitons & Fractals, vol. 38, no. 1, pp. 140–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. L.-D. Zhao, J.-B. Hu, and X.-H. Liu, “Adaptive tracking control and synchronization of fractional hyper-chaotic Lorenz system with unknown parameters,” Acta Physica Sinica, vol. 59, no. 4, pp. 2305–2309, 2010. View at Scopus
  88. F.-H. Min, Y. Yu, and C.-J. Ge, “Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system,” Acta Physica Sinica, vol. 58, no. 3, pp. 1456–1461, 2009. View at Scopus
  89. C.-X. Liu, “A hyperchaotic system and its fractional order circuit simulation,” Acta Physica Sinica, vol. 56, no. 12, pp. 6865–6873, 2007.
  90. D. Li, L.-M. Deng, Y.-X. Du, and Y.-Y. Yang, “Synchronization for fractional order hyperchaotic chen system and fractional order hyperchaotic rössler system with different structure,” Acta Physica Sinica, vol. 61, no. 5, Article ID 050502, 2012.
  91. R.-X. Zhang and S.-P. Yang, “Modified adaptive controller for synchronization of incommensurate fractional-order chaotic systems,” Chinese Physics B, vol. 21, no. 3, Article ID 030505, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Dadras, H. R. Momeni, G. Qi, and Z.-L. Wang, “Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form,” Nonlinear Dynamics, vol. 67, no. 2, pp. 1161–1173, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus