About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 384067, 8 pages
http://dx.doi.org/10.1155/2013/384067
Research Article

Chaotic Image Encryption Algorithm Based on Circulant Operation

1College of Science, Guangdong Ocean University, Zhanjiang 524088, China
2Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong

Received 19 May 2013; Revised 19 June 2013; Accepted 19 June 2013

Academic Editor: Luca Guerrini

Copyright © 2013 Xiaoling Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A novel chaotic image encryption scheme based on the time-delay Lorenz system is presented in this paper with the description of Circulant matrix. Making use of the chaotic sequence generated by the time-delay Lorenz system, the pixel permutation is carried out in diagonal and antidiagonal directions according to the first and second components. Then, a pseudorandom chaotic sequence is generated again from time-delay Lorenz system using all components. Modular operation is further employed for diffusion by blocks, in which the control parameter is generated depending on the plain-image. Numerical experiments show that the proposed scheme possesses the properties of a large key space to resist brute-force attack, sensitive dependence on secret keys, uniform distribution of gray values in the cipher-image, and zero correlation between two adjacent cipher-image pixels. Therefore, it can be adopted as an effective and fast image encryption algorithm.