About this Journal Submit a Manuscript Table of Contents
Abstract and Applied Analysis
Volume 2013 (2013), Article ID 386085, 5 pages
http://dx.doi.org/10.1155/2013/386085
Research Article

Design of T-Shaped Micropump Based on Induced Charge Electroosmotic

Department of Mechanics, China Jiliang University, Hangzhou, Zhejiang 310018, China

Received 1 September 2013; Accepted 23 September 2013

Academic Editor: Jianzhong Lin

Copyright © 2013 Kai Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Clayton, “Go with the microflow,” Nature Methods, vol. 2, no. 8, pp. 621–627, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. H. Mohamed, The MEMS Handbook, CRC Press, New York, NY, USA, 1999.
  3. K. Zhang and J. Lin, “The effect of temperature distribution on the mass species transport in micro-channels driven by electroosmosis,” in Proceedings of the Coference of Global Chinese Scholars on Hydynamics (CCSH '06), pp. 65–70, 2006.
  4. E. Grushka, R. M. McCormick, and J. J. Kirkland, “Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations,” Analytical Chemistry, vol. 61, no. 3, pp. 241–246, 1989. View at Publisher · View at Google Scholar · View at Scopus
  5. A. E. Jones and E. Grushka, “Nature of temperature gradients in capillary zone electrophoresis,” Journal of Chromatography A, vol. 466, pp. 219–225, 1989. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Z. Bazant and T. M. Squires, “Induced-charge electrokinetic phenomena: theory and microfluidic applications,” Physical Review Letters, vol. 92, no. 6, Article ID 066101, 2004.
  7. Z. Wu and D. Li, “Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles,” Microfluidics and Nanofluidics, vol. 5, no. 1, pp. 65–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J.-Z. Lin, K. Zhang, and H.-J. Li, “Study on the mixing of fluid in curved microchannels with heterogeneous surface potentials,” Chinese Physics, vol. 15, no. 11, pp. 2688–2696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Zhang, J.-Z. Lin, and Z.-H. Li, “Research on diffusion in micro-channel flow driven by electroosmosis,” Applied Mathematics and Mechanics (English Edition), vol. 27, no. 5, pp. 575–582, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  10. Z.-H. Li, J.-Z. Lin, and D.-M. Nie, “New approach to minimize dispersion induced by turn in capillary electrophoresis channel flows,” Applied Mathematics and Mechanics (English Edition), vol. 26, no. 6, pp. 685–690, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  11. H. Zhao and H. H. Bau, “Microfluidic chaotic stirrer utilizing induced-charge electro-osmosis,” Physical Review E, vol. 75, no. 6, Article ID 066217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Yu, J. Lin, and T. Chan, “A new moment method for solving the coagulation equation for particles in Brownian motion,” Aerosol Science and Technology, vol. 42, no. 9, pp. 705–713, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Wu and D. Li, “Induced-charge electrophoretic motion of ideally polarizable particles,” Electrochimica Acta, vol. 54, no. 15, pp. 3960–3967, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Saintillan, “Nonlinear interactions in electrophoresis of ideally polarizable particles,” Physics of Fluids, vol. 20, no. 6, Article ID 067104, 10 pages, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  15. D. Saintillan, E. S. G. Shaqfeh, and E. Darve, “The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation,” Journal of Fluid Mechanics, vol. 553, pp. 347–388, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  16. E. Yariv, “Slender-body approximations for electro-phoresis and electro-rotation of polarizable particles,” Journal of Fluid Mechanics, vol. 613, pp. 85–94, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet